Ex: (This problem is motivated by problem of using the rand() function in Matlab ${ }^{\circledR}$ to create arbitrary probability density functions.) Given three independent random variables, V, W, and Z, that are uniformly distributed on $[0,1]$, describe a step-by-step calculation that yields random variables X and Y with the following joint density function (whose footprint is shaped like a diamond centered on the origin):

$$
f(x, y)= \begin{cases}\frac{1}{2} & |X|+|Y| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Hint: First generate X from the density function $f_{X}(x)$ using some simple algebra involving V and W. Then generate Y from the conditional probability density function $f(y \mid X)$. Use Z and some simple algebra to create Y.

SOL'N: The plot below shows the support (or footprint) of $f(x, y)$.

Fig. 1. Support (or footprint) of $f(x, y)$.

In a 3-dimensional view, the diamond shape of $f(x, y)$ has a constant height of $1 / 2$.

Fig. 2. 3-dimensional plot of $f(x, y)$.

The rationale for the hint is that we can write the joint probability, $f(x, y)$, as the product of a density function for x alone and a conditional probability for y given x :

$$
f(x, y)=f(y \mid X=x) f_{X}(x)
$$

This means that we can first pick X distributed as $f_{X}(x)$ and then pick Y distributed as $f(y \mid X)$.

To find $f_{X}(x)$, we use the standard formula for integration in the y direction:

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y
$$

Fig. 3, below, shows the limits of the integral for a particular value of $x=x_{0}$ as the endpoints of a cross-section in the y direction. The value of $f(x, y)$ over this segment is one-half.

$$
f_{X}\left(x_{\mathrm{o}}\right)=\int_{-\left(1-\left|x_{\mathrm{o}}\right|\right)}^{1-\left|x_{\mathrm{o}}\right|} \frac{1}{2} d y=1-\left|x_{\mathrm{o}}\right|
$$

Fig. 3. Top view of cross-section used to calculate $f_{X}\left(x_{0}\right)$ and $f\left(y \mid X=x_{0}\right)$.

This above formula, written using absolute value, actually holds for any positive or negative value of x_{0}, and we have the following formula for probability density of X :

$$
f_{X}(x)=1-|x|
$$

Fig. 4 shows that $f_{X}(x)$ is triangular.

Fig. 4. Plot of $f_{X}(x)$.

There are two straightforward ways to generate a random variable, X, with this probability density function. The first is to add two uniformly
distributed random variables together (and subtract one to give a mean of zero):

$$
X=V+W-1
$$

The probability density function for X is computed as a convolution integral. We start with the probability density of V and find the probability density that $W=X-(V-1)$. We integrate this product over possible values of V.

$$
f_{X}(x)=\int_{0}^{1} f_{V}(v) f_{W}(w=x-(v-1)) d v
$$

We observe that $f_{W}(w)=1$ when $0<w<1$.

$$
f_{X}(x)=\int_{0}^{1} f_{V}(v) \cdot\left\{\begin{array}{cc}
1 & 0<x-(v-1)<1 \\
0 & \text { otherwise }
\end{array} d v\right.
$$

Rearranging the inequality to express it in terms of v yields the following expression:

$$
f_{X}(x)=\int_{0}^{1} f_{V}(v) \cdot\left\{\begin{array}{cc}
1 & x<v<x+1 \\
0 & \text { otherwise }
\end{array} d v\right.
$$

Substituting $f_{V}(v)=1$ and translating the expression for $f_{W}(w)$ into modifications of the limits of integration yields the following expression for the density function shown in Fig. 4:

$$
f_{X}(x)=\int_{\max (0, x)}^{\min (1, x+1)} 1 d v=\left\{\begin{array}{cc}
\int_{0}^{x+1} 1 d v=x+1 & -1<x<0 \\
\int_{x}^{1} 1 d v=1-x & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

From the above discussion, the step-by-step procedure for calculating X is to use the following simple formula:

$$
X=V+W-1
$$

Another way to obtain a random variable with the density function shown in Fig. 4 is to transform a single uniform random variable such as V by matching the cumulative distribution functions of X and V.

The cumulative distribution function for V is easily computed:

$$
F_{V}(v)=\int_{-\infty}^{v} f_{V}(v) d v=\left\{\begin{array}{cc}
0 & v<0 \\
v & 0<v<1 \\
1 & v>1
\end{array}\right.
$$

The cumulative distribution function for X is quadratic since $f_{X}(x)$ is linear.

$$
F_{X}(x)=\int_{-\infty}^{\infty} f_{X}(x) d x=\left\{\begin{array}{cc}
0 & x<-1 \\
\frac{1}{2}(x+1)^{2} & -1<x<0 \\
1-\frac{1}{2}(x-1)^{2} & 0<x<1 \\
1 & x>1
\end{array}\right.
$$

Given a value for V, we find a value of X such that $F_{X}(x)=F_{V}(V)$. This translates in the following equation:

$$
X \text { satisfies } \begin{cases}\frac{1}{2}(X+1)^{2}=V & 0<V<\frac{1}{2} \\ 1-\frac{1}{2}(X-1)^{2}=V & \frac{1}{2}<V<1\end{cases}
$$

or

$$
X=\left\{\begin{array}{cc}
X=\sqrt{2 V}-1 & 0<V<\frac{1}{2} \\
X=\sqrt{2(1-V)}+1 & \frac{1}{2}<V<1
\end{array}\right.
$$

Now that we have X, we use the conditional probability density function, $f(y \mid X)$ for Y. We find $f(y \mid X)$ by first taking a cross section of $f(x, y)$ at $x=X$, as shown in Fig. 5 .

Fig. 5. Cross-section used to calculate $f_{X}(X)$ and $f(y \mid X)$.

We scale the cross section vertically so it will have a total area equal to one. Fig. 6 shows the result.

Fig. 6. Conditional probability $f(y \mid X)$.

We obtain this distribution by shifting and scaling a (0,1) uniform distribution such as Z.

$$
Y=2(1-|X|)\left(Z-\frac{1}{2}\right)
$$

