DEF: $\quad A$ and B are independent events $\equiv P(A \mid B)=P(A)($ and $P(B \mid A)=P(B)$

$$
\begin{aligned}
& \equiv \text { knowing that event } B \text { has occurred } \\
& \text { doesn't change } P(A) \text { and vice versa }
\end{aligned}
$$

TooL: \quad If A and B are independent events, then $P(A, B)=P(A) P(B)$.
Ex: Consider rolling a pair of fair, six-sided dice. Let A be the event that the first die shows a 1 , and let B be the event that the second die shows a 2 . The number that shows on the first die has no influence on the number that shows on the second die. Thus, A and B are independent. Also, $P(A, B)=P(A) P(B)=\frac{1}{6} \cdot \frac{1}{6}=\frac{1}{36}$.

Ex: Consider cards dealt from a deck of 52 playing cards. Is the probability of being dealt a king of hearts on the 3 rd card, $P(3 \mathrm{rd}$ card $=\mathrm{K} \vee)$, independent of events relating to the first two cards dealt?

SoL'n: $\quad P(3 \mathrm{rd}$ card $=\mathrm{K} \vee)$ is dependent on events relating to the first two cards dealt. $P(3$ rd card $=K \vee \mid 1$ st card $=K \vee)=0$, for example. (After the king of hearts is dealt, it's gone from the deck and cannot be dealt as the 3rd card).

We might be tempted to say that $P(3$ rd card $=K \vee)$ is independent of the first two cards dealt when those cards are not the king of hearts. That would imply $P(3$ rd card $=K \vee \mid 1$ st 2 cards $\neq K \vee)=P(3$ rd card $=K \vee)$, which is false. Calculation of the probabilities yields the following:

$$
\begin{aligned}
& P(3 \text { rd card }=\mathrm{K} \vee \mid 1 \text { st } 2 \text { cards } \neq \mathrm{K} \vee)=1 / 50 \\
& P(3 \text { rd card }=\mathrm{K} \vee)=1 / 52(\text { since nothing is known about } 1 \text { st } 2 \text { cards })
\end{aligned}
$$

The lesson to be learned is that sometimes either the concept of independence violates our intuitive notions or the mathematical expressions for independence fall short of capturing a probabilistic idea that we wish to express.

Tool: If A and B are independent events, then the following events are also independent:
A and $B^{\prime}\left(\right.$ where $B^{\prime} \equiv$ complement of B, or not $\left.B\right)$
A^{\prime} and B
A^{\prime} and B^{\prime}

