EX: \quad For the following joint probability density function, $f(x, y)$, are X and Y independent? (k is a scaling constant that makes the volume under $f(x, y)$ equal to one.) If X and Y are independent, find $f_{X}(x)$ and $f_{Y}(y)$.

$$
f(x, y)=\left\{\begin{array}{cc}
k\left[\cos \left(\frac{\pi}{4}(x+y)\right)+\cos \left(\frac{\pi}{4}(x-y)\right)\right] & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

SOL'N: In an attempt to write $f(x, y)$ as a product of $f_{X}(x)$ and $f_{Y}(y)$, we apply trigonometric identities to the formula for $f(x, y)$.

$$
\begin{aligned}
& \cos \left(\frac{\pi}{4}(x+y)\right)=\cos \left(\frac{\pi}{4} x\right) \cos \left(\frac{\pi}{4} y\right)-\sin \left(\frac{\pi}{4} x\right) \sin \left(\frac{\pi}{4} y\right) \\
& \cos \left(\frac{\pi}{4}(x-y)\right)=\cos \left(\frac{\pi}{4} x\right) \cos \left(\frac{\pi}{4} y\right)+\sin \left(\frac{\pi}{4} x\right) \sin \left(\frac{\pi}{4} y\right)
\end{aligned}
$$

When we sum these identities, the $\sin ()$ terms cancel out.

$$
f(x, y)=\left\{\begin{array}{cc}
2 k\left[\cos \left(\frac{\pi}{4} x\right) \cos \left(\frac{\pi}{4} y\right)\right] & 0 \leq x \leq 1 \text { and } 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

We now see that we can separate $f(x, y)$ into a product of functions of x and y.

Thus, X and Y are independent.
NOTE: In order to write $f(x, y)$ as a product of functions of x and y, we must also consider the support (or footprint) of $f(x, y)$ on the $x y$-plane. We must be able to separate a condition such as " $0 \leq x \leq 1$ and $0 \leq y \leq 1 "$ into a condition on x alone and a condition on y alone. The intersection of these conditions must yield the condition $0 \leq x \leq 1$ and $0 \leq y \leq 1$. Here, that is possible, since we can write $0 \leq x \leq 1$ for x and $0 \leq y \leq 1$ for y.

Note: When we define $f_{X}(x)$ and $f_{Y}(y)$, we must ensure that the total area under each is equal to one. Thus, we must include the appropriate amount of the scaling factor, $2 k$, in $f_{X}(x)$ and $f_{Y}(y)$. By symmetry in the present problem, we use $\sqrt{2 k}$ in each of $f_{X}(x)$ and $f_{Y}(y)$ so that the product of scaling factors is $2 k$.

By symmetry, we have the following $f_{X}(x)$ and $f_{Y}(y)$ whose product is $f(x, y)$:

$$
\begin{aligned}
& f_{X}(x)=\left\{\begin{array}{cc}
\sqrt{2 k} \cos \left(\frac{\pi}{4} x\right) & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right. \\
& f_{Y}(y)=\left\{\begin{array}{cc}
\sqrt{2 k} \cos \left(\frac{\pi}{4} y\right) & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

To find the value of k, we set the integral of $f_{X}(x)$ equal to one.

$$
\int_{0}^{1} \sqrt{2 k} \cos \left(\frac{\pi}{4} x\right) d x=\left.\sqrt{2 k} \frac{4}{\pi} \sin \left(\frac{\pi}{4} x\right)\right|_{0} ^{1}=\sqrt{2 k} \frac{4}{\pi} \frac{1}{\sqrt{2}}=1
$$

or

$$
k=\frac{\pi^{2}}{16}
$$

Plots of $f_{X}(x), f_{Y}(y)$, and $f(x, y)$ are shown below.

