EX: \quad Find a radially symmetric joint probability density function, $f(x, y)$, for which X and Y are independent. That is, find an $f(x, y)$ that may be written as a function of $x^{2}+y^{2}$. Hint: consider what type of function turns multiplication into addition.

SOL'N: The function that turns multiplication into addition is the exponential:

$$
e^{x} e^{y}=e^{x+y}
$$

We replace x and y with x^{2} and y^{2} to obtain a function of $x^{2}+y^{2}$. We then add a minus sign to obtain functions that have finite area over the interval $(-\infty, \infty)$. Finally, we need a normalizing constant to make the area of each function equal to one so we have valid probability density functions.
Calculating the normalizing constant by calculating the integral of $e^{-x^{2}}$ directly requires advanced complex analysis. Instead, we observe that we have a gaussian density function with $\sigma^{2}=\frac{1}{2}$:

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-x^{2} / 2 \sigma^{2}}
$$

Thus, we have the following $f_{X}(x)$ and $f_{Y}(y)$:

$$
f_{X}(x)=\frac{1}{\sqrt{\pi}} e^{-x^{2}} \quad f_{Y}(y)=\frac{1}{\sqrt{\pi}} e^{-y^{2}}
$$

Since X and Y are independent, the probability density function $f(x, y)$ is the product of $f_{X}(x)$ and $f_{Y}(y)$:

$$
f(x, y)=\frac{1}{\pi} e^{-\left(x^{2}+y^{2}\right)}
$$

This definition holds for all real x and y. The plots below show the shape of this 2-dimensional gaussian (but with $\sigma^{2}=1$). Note the circular symmetry in the contour plot.

What is remarkable about the circularly symmetric gaussian is that, since x and Y are independent, every cross section must have the same shape after being scaled vertically to achieve an area equal to one. A cylindricallyshaped $f(x, y)$ would have cross sections of different widths, for example.

Standard 2-D gaussian probability density function

Standard 2-D gaussian probability density function: Topographic Map

