EX: \quad Find $P\left(\frac{1}{2}<X<\frac{3}{2}\right.$ and $\left.Y>\frac{3}{2}\right)$ for joint probability density function $f(x, y)=f_{\mathrm{X}}(x) f_{\mathrm{Y}}(y)$ where $f_{\mathrm{X}}(x)$ is a uniform distribution on the interval $[0,1]$ and $f_{\mathrm{Y}}(y)$ is a triangular distribution on the interval [0,2].

$$
f_{Y}(y)=\left\{\begin{array}{cc}
1-|1-y| & 0 \leq y \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

SOL'N: The illustration, below, shows the $3-D$ shape of $f(x, y)$ and the volume of $f(x, y)$ that lies over the region $\frac{1}{2}<X<\frac{3}{2}$ and $Y>\frac{3}{2}$ and is equal to $P\left(\frac{1}{2}<X<\frac{3}{2}\right.$ and $\left.Y>\frac{3}{2}\right)$.

The probability we are seeking is the volume of the small wedge. We may compute it by simple geometry as half the volume of a cube that measures $1 / 2$ on each side:

$$
P\left(\frac{1}{2}<X<\frac{3}{2} \text { and } Y>\frac{3}{2}\right)=\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}=\frac{1}{16}
$$

By restricting the limits of integration to the region of the $x y$-plane where is nonzero, we have an expression for the probability we seek:

$$
P\left(\frac{1}{2}<X<\frac{3}{2} \text { and } Y>\frac{3}{2}\right)=\int_{3 / 2}^{2} \int_{1 / 2}^{1} f(x, y) d x d y
$$

or

$$
P\left(\frac{1}{2}<X<\frac{3}{2} \text { and } Y>\frac{3}{2}\right)=\int_{3 / 2}^{2} \int_{1 / 2}^{1}(2-y) d y d x=\left.\int_{3 / 2}^{2}(2-y) x\right|_{1 / 2} ^{1} d y
$$

$$
P\left(\frac{1}{2}<X<\frac{3}{2} \text { and } Y>\frac{3}{2}\right)=\int_{3 / 2}^{2}(2-y) \frac{1}{2} d y=y-\left.\frac{y^{2}}{4}\right|_{3 / 2} ^{2}
$$

or

$$
P\left(\frac{1}{2}<X<\frac{3}{2} \text { and } Y>\frac{3}{2}\right)=2-\frac{3}{2}-1+\frac{9}{16}=\frac{1}{16}
$$

