Ex: A joint probability density function is defined as follows:

$$
f(x, y)= \begin{cases}k & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a) Sketch the shape of $f(x, y)$. (You may assume $k=1$ for this sketch.)
b) Calculate the value of k.

SOL'N: a) The region, $x^{2}+y^{2} \leq 1$, on which $f(x, y) \neq 0$ is called the support of $f(x, y)$. It is a circle of radius one, centered on the origin, as shown below.

Since $f(x, y)=k$ is constant on its support, $f(x, y)$ is a cylinder as shown below.

b) The volume of $f(x, y)$ equals one. Since the volume is equal to the area of the support times height k, we have volume $=k \pi r^{2}$ where $r=1$. It follows that $k=1 / \pi$. The illustration, below, shows the 3-dimensional shape of $f(x, y)$ with a height of $k=1 / \pi$.

