Ex: Find the probability density function of the average value of 12 independent standard gaussian random variables.

SOL'N: We want to find the probability density function for Y :

$$
Y=\frac{1}{12} \sum_{i=1}^{12} X_{i}
$$

where

$$
X_{i} \sim \mathrm{n}(0,1) \text { are independent standard gaussian random variables }
$$

We rewrite the expression for Y to emphasize that it is a linear combination of independent random variables.

$$
Y=\frac{1}{12} X_{1}+\ldots+\frac{1}{12} X_{12}
$$

Thus, we have the following mean and variance:

$$
\begin{aligned}
& \mu_{Y}=\frac{1}{12} \mu_{X_{1}}+\ldots+\frac{1}{12} \mu_{X_{12}}=12 \cdot \frac{1}{12} \cdot 0=0 \\
& \sigma_{Y}^{2}=\left(\frac{1}{12}\right)^{2} \sigma_{X_{1}}^{2}+\ldots+\left(\frac{1}{12}\right)^{2} \sigma_{X_{12}}^{2}=12 \cdot\left(\frac{1}{12}\right)^{2} \cdot 1=\frac{1}{12}
\end{aligned}
$$

Also, the probability density function (pdf) for a linear combination of independent gaussian random variables is a gaussian random variable. Thus, the pdf for Y is the following gaussian distribution:

$$
f_{Y}(y)=\frac{1}{\sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\left(y-\mu_{Y}\right)^{2} / 2 \sigma_{Y}^{2}}
$$

NOTE: The pdf for a linear combination of independent gaussian random variables, X_{i}, is gaussian even when the X_{i} have differing means and variances.

