Ex: An engineer is measuring the illumination, Z, at one point in an optical circuit. The engineer knows that Z is a linear combination of illumination values, X and Y, at two other points in the circuit. In other words, $Z=a X+b Y$. The engineer has gathered the following information about the illumination values:

$$
\begin{array}{llll}
\mu_{X}=6 & \mu_{Y}=15 & \mu_{Z}=6.5 & \\
\sigma_{X}^{2}=4 & \sigma_{Y}^{2}=9 & \sigma_{X Y}=3 & \sigma_{Z}^{2}=\frac{7}{4}
\end{array}
$$

Find the values of a and b, (assuming they are positive).

SOL'N: We use the following tools for linear combinations of random variables:

$$
\begin{aligned}
\mu_{Z} & \equiv \mu_{a X+b Y}=a \mu_{X}+b \mu_{Y} \\
\sigma_{Z}^{2} & \equiv \sigma_{a X+b Y}^{2}=a^{2} \sigma_{X}^{2}+b^{2} \sigma_{Y}^{2}+2 a b \sigma_{X Y}
\end{aligned}
$$

Substituting values given in the problem, we have the following two equations with unknowns a and b :

$$
\begin{aligned}
& 6.5=a \cdot 6+b \cdot 15 \\
& \frac{7}{4}=a^{2} \cdot 4+b^{2} \cdot 9+2 a b \cdot 3
\end{aligned}
$$

We can solve the first equation for b and substitute the result into the second equation:

$$
b=\frac{6.5-6 a}{15}
$$

When we substitute for b, the second equation becomes a quadratic equation in a :

$$
\frac{7}{4}=a^{2} \cdot 4+\left(\frac{6.5-6 a}{15}\right)^{2} \cdot 9+2 a\left(\frac{6.5-6 a}{15}\right) \cdot 3
$$

Multiplying both sides by 30^{2} and combining terms gives the following quadratic equation:

$$
2736 a^{2}-468 a-54=0
$$

The solutions are $a=1 / 4$ or $a=-3 / 38$. We use the positive root, $a=1 / 4$, as instructed in the problem.

Returning to the equation relating b to a, we get the following value:

$$
b=\frac{6.5-6 a}{15}=\frac{6.5-6(1 / 4)}{15}=\frac{1}{3}
$$

