Ex: $\quad$ Three random variables, $X_{1}, X_{2}$, and $X_{3}$, are independent and uniformly distributed on [ $-1 / 512,1 / 512]$. (They represent the distributions of errors for an 8 -bit analog-todigital converter that quantizes voltages by rounding off to the nearest $1 / 2^{8}$ V.) Find the mean and variance of $Z=\left(X_{1}+X_{2}+X_{3}\right) / 3$. (This represents the result of oversampling by a factor of three and averaging, as compared to using a single sample.)

SOL'N: We use the following tools for linear combinations of random variables (extended from formulas for the sum of two random variables):

$$
\begin{aligned}
& \mu_{Z} \equiv \mu_{a X_{1}+b X_{2}+c X_{3}}=a \mu_{X_{1}}+b \mu_{X_{2}}+c \mu_{X_{3}} \\
& \sigma_{a X+b}^{2}=a^{2} \sigma_{X}^{2}
\end{aligned}
$$

and, (for independent random variables)

$$
\sigma_{Z}^{2} \equiv \sigma_{a X_{1}+b X_{2}+c X_{3}}^{2}=a^{2} \sigma_{X_{1}}^{2}+b^{2} \sigma_{X_{2}}^{2}+c^{2} \sigma_{X_{3}}^{2}
$$

First, we observe that the means of $X_{1}, X_{2}$, and $X_{3}$ are zero since they are uniform distributions centered at $x=0$. Thus, we can calculate the mean of $Z$ as follows:

$$
\mu_{Z} \equiv \frac{1}{3} \mu_{X_{1}}+\frac{1}{3} \mu_{X_{2}}+\frac{1}{3} \mu_{X_{3}}=0
$$

Second, we observe that one may obtain each of the $X_{i}$ from a uniform distribution on $(0,1)$ that is shifted by $-1 / 2$, (which doesn't change the variance), and then scaling by $a=1 / 256$. Since the variance for a uniform distribution on $(0,1)$ is $1 / 12$, we have the following variance for each of the $X_{i}$ :

$$
\sigma_{X_{i}}^{2}=a^{2} \sigma_{\mathrm{u}(0,1)}^{2}=\left(\frac{1}{256}\right)^{2} \frac{1}{12}=\frac{1}{786,432}
$$

Now we apply the formula for the variance of a sum of independent random variables to $Z$ where $a=b=c=1 / 3$ :

$$
\sigma_{Z}^{2} \equiv \sigma_{a X_{1}+b X_{2}+c X_{3}}^{2}=a^{2} \sigma_{X_{1}}^{2}+b^{2} \sigma_{X_{2}}^{2}+c^{2} \sigma_{X_{3}}^{2}
$$

or

$$
\sigma_{Z}^{2} \equiv \sigma_{X_{1} / 3+b X_{2} / 3+c X_{3} / 3}^{2}=\left(\frac{1}{3}\right)^{2} \frac{1}{256^{2} 12}+\left(\frac{1}{3}\right)^{2} \frac{1}{256^{2} 12}+\left(\frac{1}{3}\right)^{2} \frac{1}{256^{2} 12}
$$

or

$$
\sigma_{Z}^{2} \equiv \sigma_{X_{1} / 3+b X_{2} / 3+c X_{3} / 3}^{2}=\frac{3}{9 \cdot 256^{2} \cdot 12}=\frac{1}{2,359,296}
$$

Note that we have a factor of $1 / 9$ for each term but we have 3 terms. Thus, our final answer contains only a factor of 3 in the denominator.

