Ex: An engineer claims that summing 12 random variables that are independent and uniformly distributed on [0,1] gives a good approximation to the standard gaussian (or normal) distribution. Calculate the mean and variance of 12 independent uniform random variables on $[0,1]$, and determine whether the engineer's claim is valid for the mean and variance. In other words, do you get the mean and variance of the standard gaussian distribution?

SOL'N: Let X_{1}, \ldots, X_{12} be the the 12 random variables that are uniformly distributed on $(0,1)$. Let Z be the random variable we obtain by summing the X_{i}. We use the following tools for linear combinations of independent random variables (extended from formulas for the sum of two random variables and using a multiplying factor of one for each term):

$$
\begin{aligned}
& \mu_{Z}=\sum_{i=1}^{12} \mu_{X_{i}} \\
& \sigma_{Z}^{2}=\sum_{i=1}^{12} \sigma_{X_{i}}^{2}
\end{aligned}
$$

For uniform $(0,1)$ random variables, we have the following values:

$$
\mu_{X_{i}}=\frac{1}{2} \quad \text { and } \quad \sigma_{X_{i}}^{2}=\frac{1}{12}
$$

Thus, we have the following mean and variance of Z :

$$
\mu_{Z}=12 \cdot \frac{1}{2}=6 \quad \text { and } \quad \sigma_{Z}^{2}=12 \cdot \frac{1}{12}=1
$$

For a standard gaussian, we have $\mu=0$ and $\sigma^{2}=1$. Thus, the engineer has the wrong mean value for Z.

NOTE: By subtracting 6 we obtain a fairly good approximation to a standard gaussian. It has the correct mean and variance, and the shape is nearly gaussian. The flaw it still has is that the tails extend only to -6 on the left and +6 on the right. It is an acceptable substitute for the gaussian, however, if having values far out on the tails are unimportant.

