Ex: \quad Given $X \sim u(0,1)$, (i.e., X is uniformly distributed from 0 to 1), and $Y=5 X+1$, find the following values:
a) μ_{Y}.
b) $\sigma_{X Y}$.

SOL'N: a) The mean of Y is given by a standard formula:

$$
\mu_{Y=a X+b}=a \mu_{X}+b
$$

Substituting values given in the problem, we have the following result:

$$
\mu_{Y=5 X+1}=5 \mu_{X}+1
$$

The mean value of X is $1 / 2$ since it has a uniform distribution on $(0,1)$. Making this substitution gives our answer:

$$
\mu_{Y}=5 \frac{1}{2}+1=\frac{7}{2}
$$

b) The covariance, $\sigma_{X Y}$, is defined in terms of $E(X Y)$:

$$
\sigma_{X Y}=E(X Y)-\mu_{X} \mu_{Y}
$$

If we substitute $Y=5 X+1$, we are left with only expected values involving x :

$$
\sigma_{X Y}=E(X(5 X+1))-\mu_{X} \mu_{5 X+1}=E\left(5 X^{2}+X\right)-\mu_{X} \mu_{5 X+1}
$$

Using the result from (a), the second term simplifies as follows:

$$
\mu_{X} \mu_{5 X+1}=\frac{1}{2} \cdot \frac{7}{2}=\frac{7}{4}
$$

The first term becomes a sum:

$$
E\left(5 X^{2}+X\right)=5 E\left(X^{2}\right)+E(X)=5 E\left(X^{2}\right)+\frac{1}{2}
$$

To find the expected value of X^{2}, we consider the variance of X. For a uniform distribution on $(0,1)$, the variance is $1 / 12$.

$$
\sigma_{X}^{2}=\frac{1}{12}=E\left(X^{2}\right)-\mu_{X}^{2}=E\left(X^{2}\right)-\left(\frac{1}{2}\right)^{2}
$$

Solving for $E\left(X^{2}\right)$, we have the following:

$$
E\left(X^{2}\right)=\sigma_{X}^{2}+\mu_{X}^{2}=\frac{1}{12}+\frac{1}{4}=\frac{1}{3}
$$

Substituting this result in our earlier equation, we have the information needed to complete the calculation of covariance:

$$
E\left(5 X^{2}+X\right)=5 E\left(X^{2}\right)+E(X)=5 \cdot \frac{1}{3}+\frac{1}{2}
$$

and

$$
\sigma_{X Y}=E(X(5 X+1))-\mu_{X} \mu_{5 X+1}=\frac{13}{6}-\frac{7}{4}=\frac{26-21}{12}=\frac{5}{12}
$$

