Tool: Given probability density function, $f_{X}(x)$, for X, the probability density function (pdf),

$$
f_{Y}(y) \text { for } Y=a X+b,(a \neq 0),
$$

is

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(x=\frac{y-b}{a}\right) .
$$

Also, the mean and variance transform as follows:

$$
\mu_{Y}=a \mu_{X}+b \quad \sigma_{Y}^{2}=a^{2} \sigma_{X}^{2}
$$

Proof: By definition, $f_{Y}(y)$ is the derivative of the cumulative probability distribution function.

$$
f_{Y}(y)=\frac{d}{d y} F_{Y}(y)=\frac{d}{d y} P(Y \leq y)
$$

Making a direct substitution for Y, we have an expression that we can transform into a statement about the probability of X :

$$
\frac{d}{d y} P(Y \leq y)=\frac{d}{d y} P(a X+b \leq y)= \begin{cases}\frac{d}{d y} P\left(X \leq \frac{y-b}{a}\right) & a>0 \\ \frac{d}{d y} P\left(X \geq \frac{y-b}{a}\right) & a<0\end{cases}
$$

The last expressions are statements about the cumulative distribution function of X.

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{d}{d y} F_{X}\left(x=\frac{y-b}{a}\right) & a>0 \\
\frac{d}{d y}\left[1-F_{X}\left(x=\frac{y-b}{a}\right)\right] & a<0
\end{array}\right.
$$

Using the chain rule from calculus, it is possible to write the above derivatives in terms of x :

$$
f_{Y}(y)=\left\{\begin{array}{cl}
\frac{d}{d x} F_{X}\left(x=\frac{y-b}{a}\right) \frac{d y}{d x} & a>0 \\
\frac{d}{d x}\left[1-F_{X}\left(x=\frac{y-b}{a}\right)\right] \frac{d y}{d x} & a<0
\end{array}\right.
$$

The derivatives in terms of x are probability density functions for X, and the derivatives of $y=a x+b$ are equal to a :

$$
f_{Y}(y)=\left\{\begin{array}{rl}
f_{X}\left(x=\frac{y-b}{a}\right) a & a>0 \\
-f_{X}\left(x=\frac{y-b}{a}\right) a & a<0
\end{array}\right.
$$

This may be written more compactly as follows:

$$
f_{Y}(y)=\frac{1}{|a|} f_{X}\left(x=\frac{y-b}{a}\right), \quad a \neq 0
$$

For the mean of Y, we write the integral formula:

$$
\mu_{Y}=E(a X+b)=\int_{-\infty}^{\infty}(a x+b) f_{X}(x) d x
$$

We rewrite the integral in two parts and exploit the property that the area under the pdf is equal to one:

$$
\mu_{Y}=a \int_{-\infty}^{\infty} x f_{X}(x) d x+b \int_{-\infty}^{\infty} f_{X}(x) d x=a \mu_{X}+b
$$

For the variance, we substitute for Y in the variance formula:

$$
\sigma_{Y}^{2}=E\left(\left[Y-\mu_{Y}\right]^{2}\right)=E\left(\left[a X+b-\left(a \mu_{X}+b\right)\right]^{2}\right)
$$

or

$$
\sigma_{Y}^{2}=E\left(a^{2}\left[X-\mu_{X}\right]^{2}\right)=a^{2} E\left(\left[X-\mu_{X}\right]^{2}\right)=a^{2} \sigma_{X}^{2}
$$

