EX: \quad Given joint probability density function $f(x, y)=1$ on the area of the x, y-plane shown below, find the marginal probability density functions, $f_{X}(x)$ and $f_{Y}(y)$.

SOL'N: The illustration below shows a 3-dimensional view of $f(x, y)$.

The value of $f_{X}(x)$ at a given value of x is the area of the cross section of $f(x, y)$ in the y direction. In the illustration below, the value of $f_{X}(x=3 / 2)$ is shown to be equal to $1 / 3 \cdot 1$ (i.e., width \cdot height) $=1 / 3$.

Since the cross-sectional area has a width that grows linearly as x increases from 0 to 3 , we can write down a formula for $f_{X}(x)$ directly:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{2}{9} x & 0 \leq x \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Mathematically, we get the same answer by integrating $f(x, y)$ in the y direction. We must, however, correctly determine the limits of integration. We do so by considering a top view of the support (or footprint) of $f(x, y)$ on the $x y$-plane:

For a given value of x between 0 and 3, y has values between $y=0$ and $y=\frac{2}{9} x$. Thus, the upper limit of the integral for $f_{X}(x)$ depends on x :

$$
f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y=\int_{y=0}^{y=2 x / 9} f(x, y) d y=\int_{y=0}^{y=2 x / 9} 1 d y=\left.y\right|_{y=0} ^{y=2 x / 9}
$$

Completing the calculation, we get our answer, (which is the same as before):

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{2}{9} x & 0 \leq x \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
$$

Similar arguments apply for the calculation of $f_{Y}(y)$. The graphical approach relies on calculation of areas of cross sections in the x direction. In contrast to cross sections in the y direction, the area of the cross sections in the x direction decrease in area as y increases. The diagram below shows that the cross section for $y=1 / 3$ has area equal to $3 / 2 \cdot 1$ (i.e., width \cdot height) $=3 / 2$.

Since the cross-sectional area has a width that decreases linearly as y increases from 0 to $2 / 3$, we can write down a formula for $f_{Y}(y)$ directly:

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{9}{2}\left(\frac{2}{3}-y\right) & 0 \leq y \leq \frac{2}{3} \\
0 & \text { otherwise }
\end{array}\right.
$$

Mathematically, we get the same answer by integrating $f(x, y)$ in the x direction. As before, we must correctly determine the limits of integration. From the top view of the support (or footprint) of $f(x, y)$ on the $x y$-plane we see that, for a given value of y between 0 and $2 / 3, x$ has values between $x=\frac{9}{2} y$ and $x=3$.

This time, the lower limit of the integral for $f_{Y}(y)$ depends on y :

$$
f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x=\int_{x=9 y / 2}^{x=3} f(x, y) d x=\int_{x=9 y / 2}^{x=3} 1 d x=\left.x\right|_{x=9 y / 2} ^{x=3}
$$

Completing the calculation, we get our answer, (which is the same as before):

$$
f_{Y}(y)=\left\{\begin{array}{cc}
3-\frac{9}{2} y & 0 \leq y \leq \frac{2}{3} \\
0 & \text { otherwise }
\end{array}\right.
$$

