Ex: A joint probability density function is defined as follows:

$$
f(x, y)= \begin{cases}\frac{1}{\pi} & x^{2}+y^{2} \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

Find the marginal probability density functions, $f_{X}(x)$ and $f_{Y}(y)$.

SOL'N: The region, $x^{2}+y^{2} \leq 1$, on which $f(x, y) \neq 0$ is called the support of $f(x, y)$. It is a circle of radius one, centered on the origin, as shown below. The diagram also shows the calculation of the vertical segment over which $f(x, y) \neq 0$ as a function of position x.

The illustration, below, shows the 3-dimensional shape of $f(x, y)$ with a height of $k=1 / \pi$. The figure also shows a cross section in the y direction at one value of x.

The value of $f_{X}(x)$ at one value of x is equal to the area of the cross-section of $f(x, y)$ in the y direction at that value of x. We use the diagram of the support (or footprint) of $f(x, y)$ to determine the limits of integration in the following calculation that determines the area of the cross-section.

$$
f_{X}(x)=\left\{\begin{array}{cc}
\int_{y=-\sqrt{1-x^{2}}}^{y=\sqrt{1-x^{2}}} f(x, y) d y & -1 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that the restriction on x is the entire width of the figure, since the crosssections in the y direction are nonzero over this width.
$f(x, y)=1 / \pi$ over the interval of integration. Thus, the value of the integral is just the length of the interval of integration times $1 / \pi$:

$$
f_{X}(x)=\left\{\begin{array}{cc}
\frac{2 \sqrt{1-x^{2}}}{\pi} & -1 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

By symmetry, we obtain a similar result for $f_{Y}(y)$:

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{2 \sqrt{1-y^{2}}}{\pi} & -1 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

