Ex: A probability density function, $f(X)$, is shown below. Use the center of mass method to find $E(X)$, the expected value of $X$.


SoL'n: When parts of $f(X)$ are horizontally symmetrical, we can replace them with a point mass located at their center of mass. The value of the point mass is the area of that portion of $f(X)$.

Mathematically, the point mass is represented by a delta (or impulse) function:

$$
m \delta(x-c)
$$

where $m \equiv$ mass and $c \equiv$ location of center of mass
For the $f(X)$ given in this problem, the half circle has an area of $1 / 4$ and is centered at $-1 / 2$. The " $M$ " has an area of $1 / 4+1 / 4=1 / 2$ centered at 1 , and the rectangle has an area of $1 / 4$ centered at $5 / 2$.


These areas are equivalent to point masses as shown below:


$$
\begin{array}{ccc}
\text { center of mass }=-1 / 2 & \text { center of mass }=1 & \text { center of mass }=5 / 2 \\
\text { mass }=1 / 4 & \text { mass }=1 / 2 & \text { mass }=1 / 4
\end{array}
$$

Mathematically, the new $f(x)$ is a summation of delta functions:

$$
f(x)=\frac{1}{4} \delta\left(x--\frac{1}{2}\right)+\frac{1}{2} \delta(x-1)+\frac{1}{4} \delta\left(x-\frac{5}{2}\right)
$$

Computing the expected value of this new $f(x)$ we have the following formal steps, (the first few steps of which may be bypassed, as explained below):

$$
E(X)=\int_{x=-\infty}^{x=\infty} x f(x) d x=\int_{x=-\infty}^{x=\infty} x\left[\frac{1}{4} \delta\left(x--\frac{1}{2}\right)+\frac{1}{2} \delta(x-1)+\frac{1}{4} \delta\left(x-\frac{5}{2}\right)\right] d x
$$

We apply the following identity several times:

$$
\int_{x=-\infty}^{x=\infty} x \delta(x-a) d x=a
$$

This yields the following expression that is the sum of center points times centers of mass, (an expression which may be written down directly without going through the preceding steps):

$$
E(X)=-\frac{1}{2} \cdot \frac{1}{4}+1 \cdot \frac{1}{2}+\frac{5}{2} \cdot \frac{1}{4}=1
$$

Note: The center-of-mass method may be applied to any shapes, but it is simplest in the case where shapes are horizontally symmetric.

