Ex: \quad The width of metal lines on an integrated circuit varies according to a distribution that falls off linearly above a certain minimum width, (which is $x=0$). Find the expected value for excess line width given the following probability density function for excess line width:

$$
f(x)=\left\{\begin{array}{cc}
\frac{1}{2}+(1-x) & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

SOL'N: By inspecting the plot of $f(x)$, below, we might estimate that the expected value or mean or μ for $f(x)$ is approximately $1 / 3$.

To find the exact value of $E(x)$, (i.e., μ), we use the formula that defines it:

$$
\mu \equiv E(x)=\int_{-\infty}^{\infty} x f(x) d x
$$

Substituting for $f(x)$, and observing that $f(x)$ is nonzero only between 0 and 1 , we have

$$
\mu \equiv E(X)=\int_{0}^{1} x\left[\frac{1}{2}+(1-x)\right] d x=\int_{0}^{1} \frac{3 x}{2} d x-\int_{0}^{1} x \cdot x d x
$$

After integrating, we have

$$
\mu \equiv E(X)=\left.\frac{3}{2} \frac{x^{2}}{2}\right|_{0} ^{1}-\left.\frac{x^{3}}{3}\right|_{0} ^{1}=\frac{3}{2} \cdot \frac{1}{2}-\frac{1}{3}=\frac{5}{12} .
$$

