EX: \quad Find μ_{X} for the joint probability function shown below.

SOL'N: We may express $f(x, y)$ as a sum of two boxes:

$$
\begin{aligned}
f(x, y)= & \left\{\begin{array}{cc}
0.1 & 0 \leq x \leq 3 \text { and } 0 \leq y \leq 3 \\
0 & \text { otherwise }
\end{array}\right. \\
& +\left\{\begin{array}{cc}
0.1 & 2 \leq x \leq 3 \text { and } 2 \leq y \leq 3 \\
0 & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

We integrate in the y direction to find the marginal density function, $f_{X}(x)$, that we need in the calculation of μ_{X}.

$$
f_{X}(x)=\int_{-\infty}^{\infty} y f(x, y) d x= \begin{cases}\int_{y=0}^{3} y(0.1) d y & 0 \leq x \leq 2 \\ \int_{y=0}^{3} y(0.1) d y+\int_{y=2}^{3} y(0.1) d y & 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

We can calculate the above integrals, or we may observe that the values of the integrals represent the areas of cross sections in the y direction, as indicated in the following figure.

The areas are given by widths times heights.

$$
f_{X}(x)= \begin{cases}0.3 & 0 \leq x \leq 2 \\ 0.3+0.1=0.4 & 2 \leq x \leq 3 \\ 0 & \text { otherwise }\end{cases}
$$

Now we integrate over x to find $\mu_{X} \equiv E(X)$.

$$
\mu_{X} \equiv E(X)=\int_{-\infty}^{\infty} x f_{X}(x) d x=\int_{0}^{2} x(0.3) d x+\int_{2}^{3} x(0.4) d x
$$

or

$$
\mu_{X}=\left.0.3 \frac{x^{2}}{2}\right|_{x=0} ^{x=2}+\left.0.4 \frac{x^{2}}{2}\right|_{x=2} ^{x=3}
$$

or

$$
\mu_{X}=0.3 \cdot \frac{4}{2}+0.4 \cdot\left(\frac{9}{2}-\frac{4}{2}\right)=1.6
$$

