Ex: \quad Given $X \sim u(0,1)$, (i.e., X is uniformly distributed from 0 to 1), find the probability density function, $f_{Y}(y)$, for Y where

$$
Y=1-e^{-X}
$$

SOL'N: The transformation from X to Y is a strictly increasing function, $g(X)$:

$$
Y=g(X)=1-e^{-X}
$$

Thus, we may use an identity for nonlinear transformation of random variables:

$$
f_{Y}(y)=f_{X}\left(x=g^{-1}(y)\right) \frac{d g^{-1}(y)}{d y}
$$

The inverse function, $g^{-1}(y)$, is found by solving for X in terms of Y :

$$
X=g^{-1}(Y)=-\ln (1-Y)
$$

Making the substitution for $g^{-1}(y)$, we have the following expression for $f_{Y}(y)$:

$$
f_{Y}(y)=f_{X}(x=-\ln (1-y)) \frac{d(-\ln (1-y))}{d y}
$$

To simplify the first term on the right side, we start with the definition of the probability density of X :

$$
f_{X}(x)=\left\{\begin{array}{lc}
1 & 0 \leq x \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Wherever x appears in the definition of $f_{X}(x)$, we substitute $g^{-1}(y)$:

$$
f_{X}\left(g^{-1}(y)\right)=\left\{\begin{array}{cc}
1 & 0 \leq g^{-1}(y) \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
f_{X}(-\ln (1-y))=\left\{\begin{array}{cc}
1 & 0 \leq-\ln (1-y) \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Now we rewrite the inequality involving $-\ln (1-y)$ in terms of y :

$$
f_{X}(-\ln (1-y))=\left\{\begin{array}{lc}
1 & g(0) \leq g(-\ln (1-y)) \leq g(1) \\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
f_{X}(-\ln (1-y))=\left\{\begin{array}{cc}
1 & 1-e^{-0} \leq y \leq 1-e^{-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
f_{X}(-\ln (1-y))=\left\{\begin{array}{cc}
1 & 0 \leq y \leq 1-e^{-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

NOTE: If $f_{X}(x)$ is more complicated than the simple uniform density function considered here and has values that are functions of x, then we would also replace those values of x with $g^{-1}(y)$, too.

Consider the following example with the same $g(x)$ as in the present problem:

$$
f_{X}(x)=\left\{\begin{array}{cc}
1-x & 0 \leq x \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

We would substitute $x=g^{-1}(y)$ for every x :

$$
f_{X}(-\ln (1-y))=\left\{\begin{array}{cc}
1--\ln (1-y) & 0 \leq-\ln (1-y) \leq 2 \\
0 & \text { otherwise }
\end{array}\right.
$$

or

$$
f_{X}(x)=\left\{\begin{array}{cc}
1+\ln (1-y) & 0 \leq y \leq 1-e^{-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Returning to the problem at hand, we now consider the second term of the expression for $f_{Y}(y)$:

$$
f_{Y}(y)=f_{X}(x=-\ln (1-y)) \frac{d(-\ln (1-y))}{d y}
$$

Taking the derivative yields the expression for the second term:

$$
\frac{d(-\ln (1-y))}{d y}=-\frac{1}{1-y}(-1)=\frac{1}{1-y}
$$

This term will multiply the first term:

$$
f_{Y}(y)=f_{X}(-\ln (1-y)) \frac{1}{1-y}=\left\{\begin{array}{cc}
1 & 0 \leq y \leq 1-e^{-1} \\
0 & \text { otherwise }
\end{array} \cdot \frac{1}{1-y}\right.
$$

or

$$
f_{Y}(y)=\left\{\begin{array}{lc}
1 \cdot \frac{1}{1-y} & 0 \leq y \leq 1-e^{-1} \\
0 \cdot \frac{1}{1-y} & \text { otherwise }
\end{array}\right.
$$

or

$$
f_{Y}(y)=\left\{\begin{array}{cc}
\frac{1}{1-y} & 0 \leq y \leq 1-e^{-1} \\
0 & \text { otherwise }
\end{array}\right.
$$

Note that, although $g()$ involved an exponential and $g^{-1}()$ involved a \log function, the expression for $f_{Y}(y)$ contains neither of these.

