Ex: Using Matlab ${ }^{\circledR}$ or pencil and paper, make an accurate plot of a standard gaussian distribution and answer the following questions:
a) What is the value of $f(x)$ at $x=0$?
b) At what value of x does $f(x)=0.5$?
c) Estimate by eye the value of x for which $F(x)=0.25$.
d) Use a table of area under the normal (i.e., gaussian) curve to find the value of x for which $F(x)=0.25$.
e) Use a table of area under the normal (i.e., gaussian) curve to find $\mathrm{P}(1 \leq x \leq 2)$.

SOL'N: a) The standard gaussian has $\mu=0$ and $\sigma^{2}=1$:

$$
f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(x-\mu)^{2} / 2 \sigma^{2}}=\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}
$$

The value of $f(x)$ at $x=0$ is the constant term since $e^{0}=1$:

$$
f(0)=\frac{1}{\sqrt{2 \pi}} \approx 0.3989=0.4
$$

b) From the plot, we observe that $f(x)$ never reaches a value of 0.5 .
c) $F(x)$ is the cumulative distribution function, which is equal to the area under the probability function to the left of x. Thus, we are looking for the value of x where the area to the left of x is $1 / 4$ of the total area of the probability density function, (since the total area under the probability density function is equal to one).

The author's estimate is $x \approx-3 / 4$.
d) Since we have a standard gaussian, we may use a table for the area under a standard gaussian directly. Note that such tables give values of $F(x)$. We use the table in reverse, however. We look for the value of $F(x)=0.25$ in the table and then look at the value of x that corresponds to that $F(x)$. The value we obtain is -0.675 to three significant figures.
e) $\mathrm{P}(1 \leq x \leq 2)=\mathrm{P}(x \leq 2)-\mathrm{P}(1 \leq x)=F(x=2)-F(x=1)$. Using a table for the area under a standard gaussian, we have

$$
F(x=2)=0.9772 \text { and } F(x=2)=0.8413 .
$$

Thus,

$$
\mathrm{P}(1 \leq x \leq 2)=0.9772-0.8413=0.1359 .
$$

