Ex: In communications theory, a transmitted bit value with additive noise is often modeled as a one or zero plus a gaussian distributed random variable. In a certain quadrature modulation scheme, transmitted pairs of bits may be treated as points at $(-1,-1)$, $(-1,1),(1,-1)$, and $(1,1)$ plus an ordered pair of random variables, X and Y, drawn from a two-dimensional gaussian distribution with correlation $\rho_{X}{ }_{Y}$ and zero means:

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho_{X Y}^{2}}} e^{-\left(x^{2}-2 \rho_{X Y} \cdot x y+y^{2}\right) / 2\left(1-\rho_{X Y}^{2}\right)}
$$

where

$$
\rho_{X Y}=\frac{\sigma_{X Y}}{\sigma_{X} \sigma_{Y}}=\frac{E\{X Y\}-\mu_{X} \mu_{Y}}{\sqrt{E\left\{X^{2}\right\}-\mu_{X}^{2}} \cdot \sqrt{E\left\{Y^{2}\right\}-\mu_{Y}^{2}}}=\frac{1}{2}
$$

To determine which pair of bits is sent, one computes $f(x, y)$ for each of the points at $(-1,-1),(-1,1),(1,-1)$, and $(1,1)$. The point with the largest value of $f(x, y)$ is taken as the bit pair that was originally sent. It turns out that the point with the largest value of $f(x, y)$ is the point closest to (X, Y).

Normally, X and Y are unknown, but suppose that a measurement of Y is available, and suppose that $Y=1 / 3$. If a $(-1,-1)$ is transmitted, find the probability that $(-1+X,-1+Y)$ is closer to $(1,-1)$ than to $(-1,-1)$.

SOL'N: We consider a diagram showing the signals and noise.

For the received signal to be closer to $(1,-1)$ than to $(-1,-1)$, the value of X must be greater than 1 , as the diagram shows. Thus, we find the conditional probability $f(x \mid y=1 / 3)$ and determine the conditional probability that $X>1$.

$$
f(x \mid y=1 / 3)=\frac{f(x, y=1 / 3)}{\int_{-\infty}^{\infty} f(x, y=1 / 3) d x}
$$

We compute the integral in the denominator by factoring out the integral of a gaussian distribution whose value must be equal to one. Our first step in this process is to substitute numerical values for ρ and y.

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\int_{-\infty}^{\infty} \frac{1}{2 \pi \sqrt{1-\frac{1}{4}}} e^{-\left(x^{2}-2 \frac{1}{2} \cdot x\left(\frac{1}{3}\right)+\left(\frac{1}{3}\right)^{2}\right) / 2\left(1-\frac{1}{4}\right)} d x
$$

or

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\int_{-\infty}^{\infty} \frac{1}{2 \pi \sqrt{\frac{3}{4}}} e^{-\left(x^{2}-2 \frac{1}{6} \cdot x+\frac{1}{9}\right) / 2\left(\frac{3}{4}\right)} d x
$$

Now we complete the square in the exponent so we will have something that is of the form $\left(x-\mu_{X}\right)^{2}$. We add and subtract terms of the same value. The extra constants that are not part of the square in the exponent may be extracted as multiplicative factors, since exponents add.

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\int_{-\infty}^{\infty} \frac{1}{2 \pi \sqrt{\frac{3}{4}}} e^{-\left(x^{2}-2 \frac{1}{6} \cdot x+\left(\frac{1}{6}\right)^{2}-\left(\frac{1}{6}\right)^{2}+\frac{1}{9}\right) / 2\left(\frac{3}{4}\right)} d x
$$

or

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\int_{-\infty}^{\infty} \frac{1}{2 \pi \sqrt{\frac{3}{4}}} e^{-\left(x-\frac{1}{6}\right)^{2} / 2\left(\frac{3}{4}\right)} \cdot e^{\left(\left(\frac{1}{6}\right)^{2}-\frac{1}{9}\right) / 2\left(\frac{3}{4}\right)} d x
$$

We now take the constant exponential terms outside of the integral, and we also extract a factor of the square root of 2π, leaving the integral of a gaussian distribution whose mean is $1 / 6$ and whose variance is $3 / 4$:

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\frac{e^{\left(\left(\frac{1}{6}\right)^{2}-\frac{1}{9}\right) / 2\left(\frac{3}{4}\right)}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \frac{3}{4}}} e^{-\left(x-\frac{1}{6}\right)^{2} / 2\left(\frac{3}{4}\right)} \cdot d x
$$

or

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\frac{e^{\frac{-1}{18}}}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi \sigma_{X}^{2}}} e^{-\left(x-\mu_{X}\right)^{2} / 2 \sigma_{X}^{2}} \cdot d x
$$

where

$$
\mu_{X}=1 / 6 \text { and } \sigma_{X}^{2}=3 / 4
$$

The value of the integral of the gaussian is one, and we have the final value we are seeking:

$$
\int_{-\infty}^{\infty} f(x, y=1 / 3) d x=\frac{e^{\frac{-1}{18}}}{\sqrt{2 \pi}}
$$

Now we evaluate the conditional probability we originally set out to find:

$$
f(x \mid y=1 / 3)=\frac{f(x, y=1 / 3)}{\int_{-\infty}^{\infty} f(x, y=1 / 3) d x}=\frac{\frac{1}{2 \pi \sqrt{\frac{3}{4}}} e^{-\left(x^{2}-2 \frac{1}{6} \cdot x+\frac{1}{9}\right) / 2\left(\frac{3}{4}\right)}}{\frac{e^{\frac{-1}{18}}}{\sqrt{2 \pi}}}
$$

If we complete the square in the exponent, as before, we get

$$
f(x \mid y=1 / 3)=\frac{\frac{e^{\frac{-1}{18}}}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{2 \pi \frac{3}{4}} e^{-\left(x-\frac{1}{6}\right)^{2} / 2\left(\frac{3}{4}\right)}}}{\frac{e^{\frac{-1}{18}}}{\sqrt{2 \pi}}}
$$

or

$$
f(x \mid y=1 / 3)=\frac{1}{\sqrt{2 \pi \frac{3}{4}}} e^{-\left(x-\frac{1}{6}\right)^{2} / 2\left(\frac{3}{4}\right)}
$$

NOTE: The mean is $\mu=\rho y$ and the variance is $\sigma^{2}=1-\rho^{2}$. This will always be the case, and we may dispense with the lengthy calculation.

Now we find $\mathrm{P}(\mathrm{X}>1)$. This is equal to $1-F(x=1)$ where $F(x)$ is the cumulative distribution for $f(x \mid y=1 / 3)$. We use the formula that converts the value of x to the value of z for a standard gaussian random variable:

$$
z=\frac{x-\mu}{\sigma}
$$

Using the mean and variance of our conditional probability and $X=1$, we have the following:

$$
z=\frac{1-\frac{1}{6}}{\sqrt{\frac{3}{4}}}=\frac{5}{3 \sqrt{3}} \approx 0.962
$$

From a table of values for the cumulative distribution, $F(z)$, of a standard gaussian, we obtain the value $F(0.962)=0.832$. Thus, our final answer is as follows:

$$
P(X>1)=1-0.832=0.168
$$

