Ex: \quad The probability density function for a 2-dimensional gaussian (or normal) distribution is described by the following formula:

$$
f(x, y)=\frac{1}{2 \pi \sqrt{1-\rho_{X Y}^{2}}} e^{-\left(x^{2}-2 \rho_{X Y} \cdot x y+y^{2}\right) / 2\left(1-\rho_{X Y}^{2}\right)}
$$

where $\rho_{X Y}=1 / 2$
a) Make a (1-dimensional) plot of a cross-section of $f(x, y)$ on the line $x=2$ (while y varies from $-\infty$ to ∞). Describe the shape of this curve. Determine whether this curve is a valid probability density function.
b) Make a (1-dimensional) plot of a cross-section of $f(x, y)$ on the line $y=2 x$. Describe the shape of this curve. Determine whether this curve is a valid probability density function.

Sol'n: a) The function we are plotting is $f(2, y)$:

$$
f(2, y)=\frac{1}{2 \pi \sqrt{1-\frac{1}{4}}} e^{-\left(2^{2}-2 \frac{1}{2} \cdot 2 y+y^{2}\right) / 2\left(1-\frac{1}{4}\right)}=\frac{1}{\pi \sqrt{3}} e^{-\left(4-2 y+y^{2}\right) / \frac{3}{2}}
$$

The plot of $f(2, y)$ shown below was generated with Matlab ${ }^{\circledR}$ code:

The shape of $f(2, y)$ is similar to a gaussian distribution. For it to be a valid pdf, it must have a total area equal to one. We cannot integrate $f(2, y)$
directly, but we can use the method of completing the square to write the exponent as y minus a constant-corresponding to the mean value of y-squared over a constant-corresponding to the variance.

$$
f(2, y)=\frac{1}{\pi \sqrt{3}} e^{-\left[(y-1)^{2}+3\right] / \frac{3}{2}}=\frac{1}{\pi \sqrt{3}} e^{-(y-1)^{2} / \frac{3}{2}} e^{-2}
$$

To achieve the desired form, we extract a factor of e^{-2} from the exponential. Now we can write $f(2, y)$ in the form of a gaussian multiplied by a constant.

$$
f(2, y)=\frac{e^{-2}}{\sqrt{2 \pi}} \frac{1}{\sqrt{2 \pi \frac{3}{4}}} e^{-(y-1)^{2} / 2 \cdot \frac{3}{4}}
$$

The constant multiplying the gaussian in this case is $e^{-2} / \sqrt{2 \pi}$. Thus, the area under $f(2, y)$ is $e^{-2} / \sqrt{2 \pi}$ rather than 1 . Thus, this slice of the 2 dimensional gaussian is not a gaussian.
b) The plot in this second case requires a bit more work. To achieve the correct scale, the distance from the original must be faithfully preserved. Using a parameterized curve, we achieve the desired result. Let t be the distance from the origin along the line $y=2 x$. If $t=1$, then the Pythagorean theorem dictates that $x=1 / \sqrt{5}$ and $y=2 / \sqrt{5}$. In general, we have $x=t / \sqrt{5}$ and $y=2 t / \sqrt{5}$. Using these values, we obtain the plot shown below, generated in Matlab ${ }^{\circledR}$.

As before, we can write $f(x=t / \sqrt{5}, y=2 t / \sqrt{5})$ in terms of a gaussian distribution.

$$
f\left(\frac{t}{\sqrt{5}}, \frac{2 t}{\sqrt{5}}\right)=\frac{1}{2 \pi \sqrt{1-\frac{1}{4}}} e^{-\left(t^{2}-2 \frac{1}{2} \cdot 4 t^{2}+(2 t)^{2}\right) / 5 \cdot 2\left(1-\frac{1}{4}\right)}
$$

or

$$
f\left(\frac{t}{\sqrt{5}}, \frac{2 t}{\sqrt{5}}\right)=\frac{1}{2 \pi \sqrt{\frac{3}{4}}} e^{-t^{2} / 2 \cdot \frac{15}{4}}=\sqrt{\frac{5}{2 \pi}} \frac{1}{\sqrt{2 \pi \frac{15}{4}}} e^{-t^{2} / 2 \cdot \frac{15}{4}}
$$

We have a gaussian distribution multiplied by $\sqrt{5 / 2 \pi}$. Thus, the area under the curve is $\sqrt{5 / 2 \pi}$ rather than 1 , and the curve is not a valid pdf.

