Ex: A sample-and-hold circuit is used in an A/D converter to store a voltage on a capacitor while it is being translated into a binary number. As with any capacitor, the stored charge on the capacitor leaks away over time. The loss of voltage is modeled by a capacitor discharge equation:

$$
V=v_{0} e^{-T / R C}
$$

where
$V \equiv$ voltage on capacitor when A/D conversion is complete (volts)
$v_{0} \equiv$ initial voltage on capacitor $=1 \mathrm{~V}$ for this problem
$T \equiv$ time required for A/D conversion = gaussian distributed random variable with mean 20 ns and variance $(2 \mathrm{~ns})^{2}$
$R C \equiv$ time constant for leakage $=6 \mu \mathrm{~s}$
a) Find the probability density function, $f_{V}(v)$, of the voltage on the capacitor at the end of the A/D conversion.
b) Find the probability that the voltage on the capacitor droops enough for a 1-bit error in an 8 -bit value. In other words, find $P\left(V \leq v_{0} \cdot 255 / 256\right)$. Hint: translate the problem into that of finding a probability for a gaussian random variable and use Table A. 3 in the course text to find that probability.

Sol'n: a) Because T is gaussian (or normal) and appears in the exponent, the form of V is almost a lognormal distribution. The form of the lognormal probability density function (pdf), [1], requires that the entire exponent be gaussian:

$$
X=e^{Y}
$$

where Y is gaussian distributed has lognormal pdf, $f_{X}(x)$, as follows

$$
f_{X}(x)= \begin{cases}\frac{1}{x \sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\left[\ln (x)-\mu_{Y}\right]^{2} / 2 \sigma_{Y}^{2}} & x>0 \\ 0 & \text { otherwise }\end{cases}
$$

where

$$
\mu_{X}=e^{\mu_{Y}+\frac{\sigma_{Y}^{2}}{2}} \quad \sigma_{X}^{2}=e^{2 \mu_{Y}+\sigma_{Y}^{2}}\left(e^{\sigma_{Y}^{2}}-1\right)
$$

In the present problem, we have $Y=\frac{-T}{R C}$ and V replaces X. This is a linear transformation of a gaussian distribution, which is again a gaussian distribution. The mean and variance of this gaussian are as follows:

$$
\mu_{Y}=\frac{-1}{R C} \mu_{T}=\frac{-1}{6 \mu \mathrm{~s}} \cdot 20 \mathrm{~ns}=-\frac{10}{3} \mathrm{~m}
$$

and

$$
\sigma_{Y}^{2}=\left(\frac{-1}{R C}\right)^{2} \sigma_{T}^{2}=\left(\frac{-1}{6 \mu \mathrm{~s}}\right)^{2}(2 \mathrm{~ns})^{2}=\left(\frac{1}{3} \mathrm{~m}\right)^{2}
$$

Replacing X with V in the lognormal pdf, we have our final expression for $f_{V}(v)$.

$$
f_{V}(v)= \begin{cases}\frac{1}{v \sqrt{2 \pi \sigma_{Y}^{2}}} e^{-\left[\ln (v)-\mu_{Y}\right]^{2} / 2 \sigma_{Y}^{2}} & v>0 \\ 0 & \text { otherwise }\end{cases}
$$

b) We find $P\left(V \leq v_{0} \cdot 255 / 256\right)$ by substituting for V in terms of T and using the cumulative distribution for T :

$$
P\left(V \leq v_{0} \cdot 255 / 256\right)=P\left(e^{\frac{-T}{R C}} \leq v_{0} \cdot 255 / 256\right)
$$

or

$$
P\left(V \leq v_{0} \cdot 255 / 256\right)=P\left(T \geq-R C \cdot \ln \left(v_{0} \cdot 255 / 256\right)\right)
$$

or

$$
P\left(V \leq v_{0} \cdot 255 / 256\right)=1-F_{T}\left(t=-R C \cdot \ln \left(v_{0} \cdot 255 / 256\right)\right)
$$

or

$$
P\left(V \leq v_{0} \cdot 255 / 256\right)=1-F_{T}(t=6 \mu \mathrm{~s} \cdot 3.914 \mathrm{~m})=1-F_{T}(t=23.48 \mathrm{n})
$$

Now we convert T to is equivalent value for a standard gaussian (or normal) distribution:

$$
Z=\frac{T-\mu_{T}}{\sigma_{T}}
$$

This means we use the value of t to find the value of z in the cumulative distribution, $F_{Z}(z)$:

$$
P\left(V \leq v_{0} \cdot 255 / 256\right)=1-F_{Z}\left(z=\frac{23.48 \mathrm{n}-20 \mathrm{n}}{2 \mathrm{n}}=1.740\right)
$$

Using a table for the cumulative distribution of the standard gaussian, [1], we lookup the value of the probability:

$$
F_{Z}(1.740)=0.9591
$$

Thus, we have the following final result:

$$
P\left(V \leq v_{0} \cdot 255 / 256\right)=1-0.9591=0.0409
$$

Ref: [1] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, Probability and Statistics for Engineers and Scientists, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.

