Ex：

After being closed for a long time，the switch opens at $t=0$ ．Find $i_{L}(t)$ for $t>0$ ．
sol＇n：Use the general form of solution for RL problems：

$$
i_{L}(t>0)=i_{L}(t \rightarrow \infty)+\left[i_{L}\left(t=0^{+}\right)-i_{L}(t \rightarrow \infty)\right] e^{-t / \frac{L}{R}} T h
$$

To find $i_{L}\left(0^{+}\right)$，we consider $t=0^{-}$．
At $t=0^{-}$，the circuit has reached stable values，and all time derivatives of i and v are zero．Thus， $v_{L}=L \frac{d i_{L}}{d t}=L \cdot O=0$ and L acts like a wire．

Since the switch is closed at $t=0^{-}$，we have a current source shorted by a wire．

We are only interested in the energy variable，$i_{L}\left(0^{-}\right)$．All other currents and voltages may change instantly when the switch opens．
$t=0^{-}: \quad L=$ wire, switch closed, find $i_{L}\left(0^{-}\right)$

$$
\begin{aligned}
& i_{L}\left(0^{-}\right)=600 \mu A \quad \begin{array}{l}
\text { since all the current } \\
\text { will flow thru the } L=\text { wire }
\end{array} \\
& i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right) \quad \begin{array}{l}
\text { since energy variables } \\
\text { (ike } i_{L} \text { and } v_{C} \text { cannot } \\
\text { change instantly }
\end{array} \\
& t=0^{+}: \begin{array}{l}
L=\text { current source, } i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right), \\
\text {switch open (left side of circuit } \\
\text { disconnected) }
\end{array} \\
& i_{L}\left(0^{+}\right)=i_{L}\left(0^{-}\right)=600 \mu \mathrm{~A} \quad i_{L}\left(0^{+}\right) \\
& =i_{L}\left(0^{-}\right) \\
& =600 \mu \mathrm{~A}
\end{aligned}
$$

Now we find $i_{L}(t \rightarrow \infty)$. As $t \rightarrow \infty$, the circuit again reaches stable values, and the L again acts like a wire.
$t \rightarrow \infty:$

The last quantity we need is $R_{T h}$, the Thevenin equivalent resistance of the circuit as seen from the terminals where the L is connected. In other words, we remove the L and find the Thevenin equivalent of the remaining circuit.

Since $t>0$, the switch is open.

The circuit is already in Thevenin equivalent form with $V_{T h}=O V$ and $R_{T h}=100 \mathrm{k} \Omega$.

Thus, the time constant of the circuit is

$$
\frac{L}{R_{T h}}=\frac{3.3 \mathrm{mH}}{100 \mathrm{k} \Omega}=\frac{33 \mathrm{mH}}{1 \mathrm{M} \Omega}=33 \mathrm{~ns}
$$

Substituting values into the general form of solution, we have our desired answer:

$$
i_{L}(t>0)=O A+(600 \mu A-O A) e^{-t / 33 n s}
$$

or

$$
i_{L}(t>0)=600 \mu A \cdot e^{-t / 33 n s}
$$

