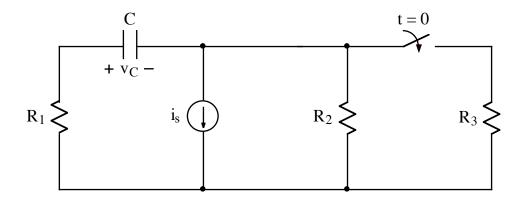
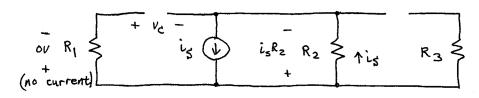
Ex:



After being open for a long time, the switch closes at t = 0. Write an expression for $v_c(t \ge 0)$ in terms of R_1 , R_2 , R_3 , i_s , and C.

Folin: At t=0 the switch is open and C= open.

t=0-:

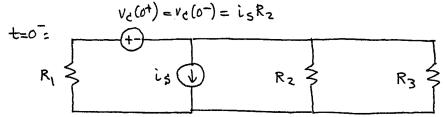


is flows thru Rz producing v-drop cs Rz.

Since there is no current in R1, this voltage appears across C.

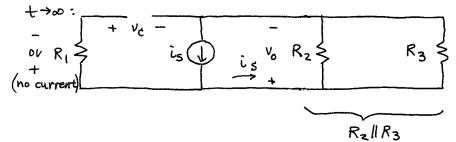
Note that + sign of i_sR_z v-drop connects to + sign of v_c thru R_1 (ov drop \approx wire) and - sign of i_sR_z v-drop connects to - sign of v_c thru wire.

At $t=0^+$, we treat C as v-source with value $v_c(0^+) = v_c(0^-)$. Switch is closed.



Since the value we need is $v_c(o^+)$, there is nothing further to solve.

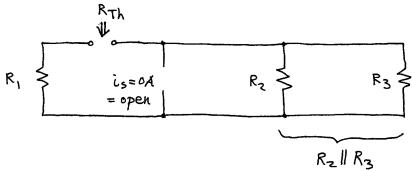
For t>00, we treat C as open, switch closed.



Now we have $V_c = i_s \cdot R_z || R_3$. This is the same as $t=0^-$ except that we have $R_z || R_3$ instead of R_z .

The time constant is RTHC.

We remove C and look into the circuit from terminals where C attaches, we also turn off is, What we see is RTA.



we have RTh = R, + Rz | R3

Now plug terms into general sol'n:

$$v_c(t > 0) = v_c(t \rightarrow \infty) + \left[v_c(0^+) - v_c(t \rightarrow \infty)\right] e^{-t/R_{Th}C}$$

Here, we have:

$$v_{c}(t>0) = i_{s} \cdot R_{z} || R_{3} + (i_{s}R_{z} - i_{s}R_{z}|| R_{3}) e^{\frac{-t}{(R_{1}+R_{z}||R_{3})C}}$$