TOOL: Series and parallel *RLC* circuits may be solved by a step-by-step procedure outlined below in (a)-(d). Figs. 1 and 2 illustrate series and parallel *RLC* circuits. Note that the circuitry to which the L and C are connected is converted to a Thevenin equivalent, which turns all the *R*'s in the circuit into a single *R*.

1

2

3

RLC CIRCUITS GENERAL RLC SOLUTION Summary (cont.)

Final value:

$$t \to \infty$$
: Use $L =$ wire, $C =$ open.
 $A_3 = v(t \to \infty)$ also applies to $i(t > 0)$

Initial value:

$$t = 0^{-}:$$
 Find $i_{L}(t = 0^{-})$ and $v_{C}(t = 0^{-})$.

$$t = 0^{+}:$$
 Find $v(t = 0^{+})$ (or whatever variable is being solved for)
Use $i_{L}(t = 0^{+}) = i_{L}(t = 0^{-})$ and $v_{C}(t = 0^{+}) = v_{C}(t = 0^{-})$.
Use $L = i$ -source of value $i_{L}(t = 0^{+})$, $C = v$ -source of value $v_{C}(t = 0^{+})$.
Find $v(t = 0^{+})$ from circuit.

Equate $v(t = 0^+)$ from circuit with $v(t = 0^+)$ for symbolic solution.

Initial value of derivative:

t > 0: Model L as *i*-source of value i_L and C as *v*-source of value v_C .

Write expression for v(t) (or whatever variable is being solved for) in terms of $i_{\rm L}$ and $v_{\rm C}$.

 $t = 0^+$: Take derivative of both sides of this expression for v(t) (or whatever variable is being solved for) and evaluate at $t = 0^+$.

Use
$$\frac{dv_{\rm C}(t)}{dt}\Big|_{t=0^+} = \frac{i_{\rm C}(t=0^+)}{C}$$
 and/or $\frac{di_{\rm L}(t)}{dt}\Big|_{t=0^+} = \frac{v_{\rm L}(t=0^+)}{L}$

Complete the calculation of $\frac{dv(t)}{dt}\Big|_{t=0^+}$ from circuit.

Equate $\frac{dv(t)}{dt}\Big|_{t=0^+}$ from circuit with $\frac{dv(t)}{dt}\Big|_{t=0^+}$ for symbolic solution.