Tool：Series and parallel RLC circuits may be solved by a step－by－step procedure outlined below in（a）－（d）．Figs． 1 and 2 illustrate series and parallel RLC circuits．Note that the circuitry to which the L and C are connected is converted to a Thevenin equivalent，which turns all the R＇s in the circuit into a single R ．

Fig．1．Series $R L C$ circuit．

$$
\alpha=\frac{R_{\mathrm{Th}}}{2 L_{\mathrm{Eq}}}
$$

Series or parallel $R L C: \quad \omega_{0}^{2}=\frac{1}{L C}$

$$
s_{1,2}=-\alpha \pm \sqrt{\alpha^{2}-\omega_{0}^{2}}
$$

Over－damped：$\quad s_{1,2}$ real，negative，distinct

$$
v(t>0)=A_{1} e^{s_{1} t}+A_{2} e^{s_{2} t}+A_{3} \text { also applies to } i(t>0)
$$

$$
v\left(t=0^{+}\right)=A_{1}+A_{2}+\left.A_{3} \quad \frac{d v(t)}{d t}\right|_{t=0^{+}}=A_{1} s_{1}+A_{2} s_{2}
$$

Critically-damped: $\quad \mathrm{s} 1=\mathrm{s} 2=-\alpha$ real, negative, repeated $v(t>0)=A_{1} e^{-\alpha t}+A_{2} t e^{-\alpha t}+A_{3}$ also applies to $i(t>0)$
$v\left(t=0^{+}\right)=A_{1}+\left.A_{3} \quad \frac{d v(t)}{d t}\right|_{t=0^{+}}=A_{1}(-\alpha)+A_{2}$

Under-damped: $\quad \mathrm{s}_{1,2}=-\alpha \pm j \omega_{d}$ complex, distinct
$\omega_{d}=\sqrt{\omega_{0}^{2}-\alpha^{2}} \quad$ damping frequency
$v(t>0)=A_{1} e^{-\alpha t} \cos \left(\omega_{d} t\right)+A_{2} e^{-\alpha t} \sin \left(\omega_{d} t\right)+A_{3}$ also applies to $i(t>0)$
$v\left(t=0^{+}\right)=A_{1}+\left.A_{3} \quad \frac{d v(t)}{d t}\right|_{t=0^{+}}=A_{1}(-\alpha)+A_{2} \omega_{\mathrm{d}}$

Final value:
$t \rightarrow \infty$: Use $L=$ wire, $C=$ open.
$A_{3}=v(t \rightarrow \infty) \quad$ also applies to $i(t>0)$
Initial value:
$t=0^{-}: \quad$ Find $i_{\mathrm{L}}\left(t=0^{-}\right)$and $v_{\mathrm{C}}\left(t=0^{-}\right)$.
$t=0^{+}: \quad$ Find $v\left(t=0^{+}\right.$) (or whatever variable is being solved for)
Use $i_{\mathrm{L}}\left(t=0^{+}\right)=i_{\mathrm{L}}\left(t=0^{-}\right)$and $v_{\mathrm{C}}\left(t=0^{+}\right)=v_{\mathrm{C}}\left(t=0^{-}\right)$.
Use $L=i$-source of value $i_{\mathrm{L}}\left(t=0^{+}\right), C=v$-source of value $v_{\mathrm{C}}\left(t=0^{+}\right)$.
Find $v\left(t=0^{+}\right)$from circuit.
Equate $v\left(t=0^{+}\right)$from circuit with $v\left(t=0^{+}\right)$for symbolic solution.
Initial value of derivative:
$t>0: \quad$ Model L as i-source of value i_{L} and C as v-source of value v_{C}.
Write expression for $v(t)$ (or whatever variable is being solved for) in terms of i_{L} and v_{C}.
$t=0^{+}$: Take derivative of both sides of this expression for $v(t)$ (or whatever variable is being solved for) and evaluate at $t=0^{+}$.

Use $\left.\frac{d v_{\mathrm{C}}(t)}{d t}\right|_{t=0^{+}}=\frac{i_{\mathrm{C}}\left(t=0^{+}\right)}{C}$ and/or $\left.\frac{d i_{\mathrm{L}}(t)}{d t}\right|_{t=0^{+}}=\frac{v_{\mathrm{L}}\left(t=0^{+}\right)}{L}$
Complete the calculation of $\left.\frac{d v(t)}{d t}\right|_{t=0^{+}}$from circuit.
Equate $\left.\frac{d v(t)}{d t}\right|_{t=0^{+}}$from circuit with $\left.\frac{d v(t)}{d t}\right|_{t=0^{+}}$for symbolic solution.

