May 1990 Neil E Cotter Real Analysis - Convergence Theorems - Lusin's Theorem

thm (Luzin): Let f be measurable on compact domain \$\mathbb{Z}\$. D.

Assume f finite except on a set of measure zero. (For all thms on this page of the thirt of the few country of the few country of the theore for a set of measure for where for any be as small as desired.

Alternative notation: VE>O 3 g cont. m 2 f # g 3 < E \$

for all there exists

corollary: There exists sequence $\langle \frac{f_n}{f_n} \rangle$ of continuous functions such that $\langle \frac{f_n}{f_n} \rangle \to gf$ in measure.

thm (in measure \Rightarrow a.e): Let $\langle f_n \rangle$ be a sequence of measurable functions such that $\langle f_n \rangle \rightarrow f$ in measure. Then there is a subsequence $\langle f_{n_k} \rangle$ of $\langle f_n \rangle$ such that $\langle f_{n_k} \rangle \rightarrow f$ a.e.

corollary: If $\langle f_n \rangle$ is a sequence of continuous functions such that $\langle f_n \rangle \to f$ in measure, then there exists a sequence $\langle f_{n_k} \rangle$ of continuous functions such that $\langle f_{n_k} \rangle \to f$ a.e.

thm (a.e. \Rightarrow uniform (almost)): Let $\langle f_n \rangle \rightarrow f$ a.e. with f_n measurable. Then for any $\in >0$ and s >0 there exists a set d of measure $m \notin d \subseteq < s$ such that

 $|f_n(x)-f| \le for all x \notin d$ and all $n \ge N$.

corollary: If $\langle f_{n_k} \rangle \rightarrow f$ <u>a.e.</u> for f_{n_k} continuous then we can find a set d, of arbitrarily small measure, such that $\langle f_{n_k} \rangle \rightarrow f$ <u>uniformly on $D \sim d$ </u> (domain excluding d).

ref: H.L. Royden Real Analysis Macmillan 1968 ISBN 0-02-404150-5