Ex: Write the state-variable equations for the circuit shown below.

The voltage $v_{g}(t)$ changes instantly from $-v_{o}$ to v_{o} at $t=0$.

ANS:

$$
\begin{aligned}
& \mathrm{di}_{1} / \mathrm{dt}=\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right) / \mathrm{L}-\mathrm{i}_{1} \mathrm{R}_{1} / \mathrm{L} \\
& \mathrm{dv}_{1} / \mathrm{dt}=\mathrm{i}_{1} / \mathrm{C}_{1} \\
& \mathrm{dv}_{2} / \mathrm{dt}=-\mathrm{i}_{1} / \mathrm{C}_{2}+\left(\mathrm{v}_{\mathrm{o}}-\mathrm{v}_{2}\right) /\left(\mathrm{R}_{2} \mathrm{C}_{2}\right)
\end{aligned}
$$

SOL'N: The state variables are always the inductor currents and capacitor voltages (which are also the variables we use to calculate stored energy). Thus, our state variables are $i_{\mathrm{L} 1}, v_{\mathrm{C} 1}$, and $v_{\mathrm{C} 2}$. We denote these as i_{1}, v_{1}, and v_{2}.
We use the basic component equations to translate derivatives of state variables into non-derivatives:

$$
\begin{aligned}
\frac{d i_{L}}{d t} & =\frac{v_{L}}{L} \\
\frac{d v_{C}}{d t} & =\frac{i_{C}}{C}
\end{aligned}
$$

Application of these equations reduces the problem to that of writing equations for $v_{\mathrm{L} 1}, i_{\mathrm{C} 1}$, and $i_{\mathrm{C} 2}$. Each of these equations must have only the state variables, $i_{\mathrm{L} 1}, v_{\mathrm{C} 1}$, and $v_{\mathrm{C} 2}$, on the other side so the final equations (in terms of the derivatives of state variables) involve only state variables.

The circuit diagram below shows $v_{\mathrm{L} 1}, v_{\mathrm{L} 2}$, and $i_{\mathrm{C} 1}$. We now apply Kirchhoff's laws-voltage loops and current sums at nodes-to find our state-space equations.

The equation for $v_{\text {L1 }}$ must come from a voltage loop, and the voltage loop around the outside will suffice in this case. We use Ohm's law to express the voltages across R_{1}.

$$
v_{L 1}+i_{1} R_{1}+v_{1}-v_{2}=0 V \text { or } v_{L 1}=v_{2}-v_{1}-i_{1} R_{1}
$$

(Note that the inner voltage loop that includes L_{1} would pose difficulties with expressing the voltage for R_{2}. We could express the voltage across R_{2} as $v_{2}-v_{g}(t)$, however, and obtain the same equation as above.)
The equation for $i_{\mathrm{C} 1}$ is simple:

$$
i_{C 1}=i_{1}
$$

The equation for $i_{\mathrm{C} 2}$ must come from a current summation. In this circuit, there are only two nodes: the top and the bottom rails. Because they effectively yield the same current summation equation, we only use one of these nodes. For the top node, summing currents flowing out of the node poses the problem of writing the current in the middle branch in terms of state variables. The solution is to the inner voltage loop on the right side to solve for the current through R_{2} :

$$
i_{R 2}=\frac{v_{2}-v_{g}(t)}{R_{2}}
$$

Using this equation for $i_{\mathrm{R} 2}$ and summing currents yields an equation for $i_{\mathrm{C} 2}$:

$$
i_{1}+\frac{v_{2}-v_{g}(t)}{R_{2}}+i_{C 2}=0 A \text { or } i_{C 2}=-i_{1}+\frac{-v_{2}+v_{g}(t)}{R_{2}}
$$

To complete the derivation, we use the basic component equations to change $v_{\mathrm{L} 1}$, $v_{\mathrm{L} 2}$, and $i_{\mathrm{C} 1}$ back into derivatives of state variables.

$$
\begin{aligned}
\frac{d i_{1}}{d t} & =\frac{v_{2}-v_{1}-i_{1} R_{1}}{L_{1}} \\
\frac{d v_{1}}{d t} & =\frac{i_{1}}{C_{1}} \\
\frac{d v_{2}}{d t} & =\frac{-i_{1} R_{2}+v_{o}-v_{2}}{R_{2} C}
\end{aligned}
$$

Note that in the third equation we have substituted the value of v_{O} for v_{g} for $t>0$.

