Thm: Given n Bernoulli trials with probability of success for each trial being p, the probability, $P(m$ of $n)$, of exactly m successes in n trials approaches the probability density of $x=m$ for a normal (i.e., gaussian) distribution with $\mu=n p$ and $\sigma^{2}=n p q$:

$$
\text { As } n \rightarrow \infty, P(m \text { of } n) \rightarrow f(x=m)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(m-\mu)^{2} / 2 \sigma^{2}}
$$

Proof: We follow the general method of proof given in [1].
For Bernoulli trials we have the following value for $P(m$ of $n)$:

$$
P(m \text { of } n)={ }_{n} C_{m} \cdot p^{m} q^{n-m}
$$

where ${ }_{n} C_{m} \equiv \frac{n!}{(n-m)!m!}$ is the combinatoric coefficient.
For the proof, we consider different values of n, and we will consider m to be a fixed number, k, of standard deviations from the mean as n increases.

$$
m=\mu+k \sigma
$$

Note: Although m is an integer, the method of proof allows k to have any real value.

We use Stirling's formula, [2], to approximate the factorials in ${ }_{n} \mathrm{C}_{m}$:

$$
n!=\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{\theta}{12 n}}
$$

where $n>0$ and $0<\theta<1$.
Note: Stirling's formula is related to the Stirling series expansion of the gamma function in powers of $1 / n$, (see [3]). The Stirling series has the curious property that it produces very accurate approximations of the gamma functions with only a few terms - and actually diverges if all the terms are used.

Using Stirling's formula for the terms of ${ }_{n} \mathrm{C}_{m}$, yields the following expression:

$$
{ }_{n} C_{m}=\frac{\sqrt{2 \pi} n^{n+\frac{1}{2}} e^{-n+\frac{\theta_{1}}{12 n}}}{\sqrt{2 \pi}(n-m)^{n-m+\frac{1}{2}} e^{-n-m+\frac{\theta_{2}}{12(n-m)}} \sqrt{2 \pi} m^{m+\frac{1}{2}} e^{-m+\frac{\theta_{3}}{12 m}}}
$$

As n becomes large, so do $n-m$ and m, and the residual terms involving θ_{1}, θ_{2}, and θ_{3} become vanishingly small. Thus, we may eliminate the θ terms and, after also canceling common factors of $\sqrt{2 \pi}$ and the exponentials of e, write the following expression:

$$
{ }_{n} C_{m} \rightarrow \frac{n^{n+\frac{1}{2}}}{\sqrt{2 \pi}(n-m)^{n-m+\frac{1}{2}} m^{m+\frac{1}{2}}} \text { as } n \rightarrow \infty
$$

If we split the n^{n} term into two pieces in the numerator, we can match up the exponents in the numerator and denominator:

$$
{ }_{n} C_{m} \rightarrow \frac{n^{n-m} n^{m} \sqrt{n}}{\sqrt{2 \pi}(n-m)^{n-m} \sqrt{\mathrm{n}-\mathrm{m}} \cdot m^{m} \sqrt{m}} \text { as } n \rightarrow \infty
$$

or

$$
{ }_{n} C_{m} \rightarrow \frac{\sqrt{n}}{\sqrt{2 \pi(n-m) m}}\left(\frac{n}{n-m}\right)^{n-m}\left(\frac{n}{m}\right)^{m} \text { as } n \rightarrow \infty
$$

Now we invert the terms being exponentiated and use the following formulas:

$$
\frac{m}{n}=\frac{\mu+k \sigma}{n}=\frac{n p+k \sigma}{n}=p\left(1+\frac{k \sigma}{n p}\right)
$$

and

$$
\frac{n-m}{n}=1-\frac{\mu+k \sigma}{n}=1-\frac{n p+k \sigma}{n}=q\left(1-\frac{k \sigma}{n q}\right)
$$

Substituting these expressions yields the following equation:

$$
{ }_{n} C_{m} \rightarrow \frac{\sqrt{n}}{\sqrt{2 \pi(n-m) m}}\left(q\left(1-\frac{k \sigma}{n q}\right)\right)^{-n+m}\left(p\left(1+\frac{k \sigma}{n p}\right)\right)^{-m} \text { as } n \rightarrow \infty
$$

The terms having n in their denominators will become small as n becomes large. Thus, we use an approximation that exploits this behavior:

$$
\ln (1+x) \approx x-\frac{x^{2}}{2} \text { for } x \text { small }
$$

or

$$
(1+x)^{r}=e^{r \ln (1+x)} \approx e^{r\left(x-\frac{x^{2}}{2}\right)} \text { for } x \text { small (from Taylor series for } \ln \text {) }
$$

Applying this identity to our formula for the combinatoric coefficient, we have the following expression:

$$
{ }_{n} C_{m} \rightarrow \frac{\sqrt{n}}{\sqrt{2 \pi(n-m) m}} q^{-n+m} p^{-m} e^{(-n+m)\left(-k \frac{\sigma}{n q}-\frac{k^{2} \sigma^{2}}{2 n^{2} q^{2}}\right)} e^{-m}\left(k \frac{\sigma}{n p}-\frac{k^{2} \sigma^{2}}{2 n^{2} p^{2}}\right)
$$

Using $m=n p+k \sigma$ and $m-n=-n q+k \sigma$ we have

$$
{ }_{n} C_{m} \rightarrow \frac{\sqrt{n}}{\sqrt{2 \pi(n-m) m}} q^{-n+m} p^{-m} e^{(k \sigma-n q)}\left(-k \frac{\sigma}{n q}-\frac{k^{2} \sigma^{2}}{2 n^{2} q^{2}}\right)-(k \sigma+n p)\left(k \frac{\sigma}{n p}-\frac{k^{2} \sigma^{2}}{2 n^{2} p^{2}}\right)
$$

If we consider just the exponent, we have the following calculation:

$$
\begin{aligned}
& -\frac{k^{2} \sigma^{2}}{n q}-\frac{k^{2} \sigma^{2}}{n p}+k \sigma\left(\frac{k^{2} \sigma^{2}}{2 n^{2} p^{2}}-\frac{k^{2} \sigma^{2}}{2 n^{2} q^{2}}\right)+n q \frac{k^{2} \sigma^{2}}{2 n^{2} q^{2}}+n p \frac{k^{2} \sigma^{2}}{2 n^{2} p^{2}} \\
& =-\frac{k^{2} \sigma^{2} p}{n p q}-\frac{k^{2} \sigma^{2} q}{n p q}+k \sigma\left(\frac{k^{2} \sigma^{2} q^{2}}{2 n^{2} p^{2} q^{2}}-\frac{k^{2} \sigma^{2} p^{2}}{2 n^{2} p^{2} q^{2}}\right)+(n p+n q) \frac{k^{2} \sigma^{2}}{2 n^{2} p q}
\end{aligned}
$$

Using $\sigma^{2}=n p q$ the simplification of the exponent continues:

$$
\begin{aligned}
& =-k^{2} p-k^{2} q+k \sigma\left(\frac{k^{2} q^{2}}{2 \sigma^{2}}-\frac{k^{2} p^{2}}{2 \sigma^{2}}\right)+\frac{k^{2}}{2} \\
& =-k^{2}+k\left(\frac{k^{2} q^{2}}{2 \sigma}-\frac{k^{2} p^{2}}{2 \sigma}\right)+\frac{k^{2}}{2} \\
& =-\frac{k^{2}}{2}+k\left(\frac{k^{2} q^{2}}{2 \sigma}-\frac{k^{2} p^{2}}{2 \sigma}\right)
\end{aligned}
$$

We observe that the second term is proportional to $1 / \sqrt{n}$ and vanishes as n becomes large. Dropping this term yields the following expression:

$$
{ }_{n} C_{m} \rightarrow \frac{\sqrt{n}}{\sqrt{2 \pi(n-m) m}} q^{-n+m} p^{-m} e^{-\frac{k^{2}}{2}} \text { as } n \rightarrow \infty
$$

If we now multiply by the probability, $p^{m} q^{n-m}$ of one particular pattern of m successes occurring, we obtain the following expression:

$$
P(m \text { of } n) \rightarrow \frac{\sqrt{n}}{\sqrt{2 \pi(n-m) m}} e^{-\frac{k^{2}}{2}} \text { as } n \rightarrow \infty
$$

We have the following simplification for the factor in front:

$$
\sqrt{\frac{n}{2 \pi(n-m) m}}=\sqrt{\frac{1}{2 \pi\left(1-\frac{m}{n}\right) m}}=\sqrt{\frac{1}{2 \pi\left(1-\frac{n p+k \sigma}{n}\right)(n p+k \sigma)}}
$$

For n large, $k \sigma$ is much smaller than n, leading to the following result:

$$
\sqrt{\frac{n}{2 \pi(n-m) m}} \approx \sqrt{\frac{1}{2 \pi\left(1-\frac{n p}{n}\right)(n p)}}=\sqrt{\frac{1}{2 \pi q n p}}=\sqrt{\frac{1}{2 \pi \sigma^{2}}}
$$

With this substitution, and using $k^{2}=\frac{(m-\mu)^{2}}{\sigma^{2}}$ we complete our proof:

$$
P(m \text { of } n) \rightarrow \frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{k^{2}}{2}}=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-(m-\mu)^{2} / 2 \sigma^{2}} \text { as } n \rightarrow \infty
$$

REF: [1] Eugene Lukacs, Probability and Mathematical Statistics, an Introduction, New York, NY: Academic Press, 1972.
[2] Milton Abramowitz and Irene A. Stegun, Eds., Handbook of Mathematical Functions: National Bureau of Standards Applied Mathematics Series 55, Washington, D.C.: Government Printing Office, 1972.
[3] Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods for Scientists and Engineers, New York, NY: McGraw-Hill, 1978.

