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Proof for Bernoulli trials

THM:

Given n Bernoulli trials with probability of success for each trial being p, the
probability, P(m of n), of exactly m successes in n trials approaches the probability
density of x = m for a normal (i.e., gaussian) distribution with w = np and 02 = npq:
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PROOF: We follow the general method of proof given in [1].
For Bernoulli trials we have the following value for P(m of n):

P(mofn) = ,C,,-p"q"™"
n! ) ) ) ..
where ,C,, = ———— is the combinatoric coefficient.
(n-m)!m!
For the proof, we consider different values of n, and we will consider m to

be a fixed number, k, of standard deviations from the mean as n increases.
m=Wu+ ko

NOTE: Although m is an integer, the method of proof allows k to have

any real value.

We use Stirling's formula, [2], to approximate the factorials in ,Cp;:
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where n>0and0< 6 < 1.

NOTE: Stirling's formula is related to the Stirling series expansion of
the gamma function in powers of 1/n, (see [3]). The Stirling
series has the curious property that it produces very accurate
approximations of the gamma functions with only a few

terms—and actually diverges if all the terms are used.

Using Stirling's formula for the terms of ,C,, yields the following
expression:
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As n becomes large, so do n — m and m, and the residual terms involving
01, 02, and 03 become vanishingly small. Thus, we may eliminate the 0
terms and, after also canceling common factors of +/2m and the

exponentials of e, write the following expression:
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If we split the n’* term into two pieces in the numerator, we can match up

the exponents in the numerator and denominator:
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Now we invert the terms being exponentiated and use the following

formulas:

ﬂ=pt+k0= np+k0=p(1+k_0)
n n n np

and

n—m=1_u+k0=1_np+k0=q(l_k_0)
n n n nq

Substituting these expressions yields the following equation:
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The terms having 7 in their denominators will become small as n becomes
large. Thus, we use an approximation that exploits this behavior:

2
In(l+ x) ~ x % for x small
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or

x2
=

-
2 J
(1+x) =e" In(+x) _ [ for x small (from Taylor series for In)

Applying this identity to our formula for the combinatoric coefficient, we

have the following expression:
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Using m = np + ko and m — n = —ng + ko we have
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If we consider just the exponent, we have the following calculation:
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Using 02 = npq the simplification of the exponent continues:

22 2.2 2
-k’ p-k2q+ ko k—qz-k—’g L
20 20 2
22 2.2 2
TN L
26 20 ] 2

2 22 2.2
__ kT ke _kTp
2 20 20

We observe that the second term is proportional to 1/ \/n and vanishes as

n becomes large. Dropping this term yields the following expression:
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If we now multiply by the probability, p™¢q of one particular pattern

of m successes occurring, we obtain the following expression:

Pmofn) > ————¢ 2 asn—>

We have the following simplification for the factor in front:

27(n - m)m 2m(1 - ﬂ)m 27(l - "pr kO)(nP + ko)
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For n large, ko is much smaller than n, leading to the following result:
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With this substitution, and usin k% = M we complete our proof:
g > p p
o
k2
-— 2,,2
P(m of n) — ! e 2 = ! e~ MW7207 ai
2n02 202

REF: [1] Eugene Lukacs, Probability and Mathematical Statistics, an Introduction,
New York, NY: Academic Press, 1972.

[2] Milton Abramowitz and Irene A. Stegun, Eds., Handbook of Mathematical
Functions: National Bureau of Standards Applied Mathematics Series 55,
Washington, D.C.: Government Printing Office, 1972.

[3] Carl M. Bender and Steven A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers, New York, NY: McGraw-Hill, 1978.



