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Proof for Bernoulli trials

THM: Given n Bernoulli trials with probability of success for each trial being p, the
probability, P(m of n), of exactly m successes in n trials approaches the probability
density of x = m for a normal (i.e., gaussian) distribution with µ = np and σ2 = npq:

€ 

As n→∞,  P(m of n)→ f (x = m) =
1

2πσ2
e−(m−µ)2 /2σ2

.

PROOF: We follow the general method of proof given in [1].

For Bernoulli trials we have the following value for P(m of n):

€ 

P(m of n) = nCm ⋅ p
mqn−m

where 

€ 

nCm ≡
n!

(n −m)!m!
 is the combinatoric coefficient.

For the proof, we consider different values of n, and we will consider m to
be a fixed number, k, of standard deviations from the mean as n increases.

€ 

m = µ + kσ

NOTE: Although m is an integer, the method of proof allows k to have
any real value.

We use Stirling's formula, [2], to approximate the factorials in nCm:

€ 

n!= 2π  n
n+ 1

2e
−n+ θ

12n

where n > 0 and 0 < θ < 1.

NOTE: Stirling's formula is related to the Stirling series expansion of
the gamma function in powers of 1/n, (see [3]).  The Stirling
series has the curious property that it produces very accurate
approximations of the gamma functions with only a few
terms—and actually diverges if all the terms are used.

Using Stirling's formula for the terms of nCm, yields the following
expression:

€ 

nCm =
2π  n

n+ 1
2e
−n+

θ1
12n

2π  (n −m)
n−m+ 1

2 e
−n−m+

θ2
12(n−m ) 2π  m

m+ 1
2e
−m+

θ3
12m
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Proof for Bernoulli trials (cont.)

As n becomes large, so do n – m and m, and the residual terms involving
θ1, θ2, and θ3 become vanishingly small.  Thus, we may eliminate the θ
terms and, after also canceling common factors of 

€ 

2π  and the
exponentials of e, write the following expression:

€ 

nCm →
 n
n+ 1

2

2π  (n −m)
n−m+ 1

2  m
m+ 1

2
 as n→∞

If we split the nn term into two pieces in the numerator, we can match up
the exponents in the numerator and denominator:

€ 

nCm →
 nn−mnm n

2π  (n −m)n−m n - m ⋅mm m
 as n→∞

or

€ 

nCm →
n

2π(n −m)m
n

n −m
 

 
 

 

 
 
n−m n

m
 

 
 

 

 
 
m

 as n→∞

Now we invert the terms being exponentiated and use the following
formulas:

€ 

m
n

=
µ + kσ
n

=
np + kσ

n
= p 1+

kσ
np

 

 
 

 

 
 

and

€ 

n −m
n

=1− µ + kσ
n

=1− np + kσ
n

= q 1− kσ
nq

 

 
 

 

 
 

Substituting these expressions yields the following equation:

€ 

nCm →
n

2π(n −m)m
q 1− kσ

nq
 

 
 

 

 
 

 

 
 

 

 
 

−n+m
p 1+

kσ
np

 

 
 

 

 
 

 

 
 

 

 
 

−m
 as n→∞

The terms having n in their denominators will become small as n becomes
large.  Thus, we use an approximation that exploits this behavior:

€ 

ln(1+ x) ≈ x − x
2

2
 for x small



 CONCEPTUAL    TOOLS  By:  Neil E. Cotter STATISTICS
CENTRAL LIMIT THEOREM

Proof for Bernoulli trials (cont.)

or

€ 

(1+ x)r = er ln(1+x) ≈ e
r x− x

2

2

 

 
  

 

 
  
 for x small (from Taylor series for ln)

Applying this identity to our formula for the combinatoric coefficient, we
have the following expression:

€ 

nCm →
n

2π(n −m)m
q−n+mp−me

−n+m( ) −k σ
nq
−
k2σ2

2n2q2
 

 
  

 

 
  
e−m

k σ
np
−
k2σ2

2n2p2
 

 
  

 

 
  

Using m = np + kσ and m – n = –nq + kσ we have

€ 

nCm →
n

2π(n −m)m
q−n+mp−me

kσ−nq( ) −k σ
nq
−
k2σ2

2n2q2
 

 
  

 

 
  − kσ+np( ) k σ

np
−
k2σ2

2n2p2
 

 
  

 

 
  

If we consider just the exponent, we have the following calculation:

€ 

−
k2σ2

nq
−
k2σ2

np
+ kσ k2σ2

2n2p2
−
k2σ2

2n2q2
 

 
  

 

 
  + nq

k2σ2

2n2q2
+ np k2σ2

2n2p2

€ 

= −
k2σ2p
npq

−
k2σ2q
npq

+ kσ k2σ2q2

2n2p2q2
−
k2σ2p2

2n2p2q2
 

 
  

 

 
  + np + nq( ) k

2σ2

2n2pq

Using σ2 = npq the simplification of the exponent continues:

€ 

= −k2p − k2q + kσ k2q2

2σ2
−
k2p2

2σ2
 

 
  

 

 
  +

k2

2

€ 

= −k2 + k k2q2

2σ
−
k2p2

2σ

 

 
  

 

 
  +

k2

2

€ 

= −
k2

2
+ k k2q2

2σ
−
k2p2

2σ

 

 
  

 

 
  

We observe that the second term is proportional to 

€ 

1/ n  and vanishes as
n becomes large.  Dropping this term yields the following expression:
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Proof for Bernoulli trials (cont.)

€ 

nCm →
n

2π(n −m)m
q−n+mp−me

−
k2

2  as n→∞

If we now multiply by the probability, 

€ 

pmqn−m of one particular pattern
of m successes occurring, we obtain the following expression:

€ 

P(m of n)→ n
2π(n −m)m

e
−
k2

2  as n→∞

We have the following simplification for the factor in front:

€ 

n
2π(n −m)m

=
1

2π(1− m
n
)m

=
1

2π(1− np + kσ
n

)(np + kσ)

For n large, kσ is much smaller than n, leading to the following result:

€ 

n
2π(n −m)m

≈
1

2π(1− np
n
)(np)

=
1

2πqnp
=

1
2πσ2

With this substitution, and using 

€ 

k2 =
(m −µ)2

σ2
 we complete our proof:

€ 

P(m of n)→ 1

2πσ2
e
−
k2

2 =
1

2πσ2
e−(m−µ)2 /2σ2

 as n→∞
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