- Ex: Using a spreadsheet or numerical program with observations drawn from a standard gaussian (normal) distribution, (i.e., $\mu = 0$ and $\sigma^2 = 1$), calculate the estimated standard deviation, $\hat{\sigma}$, 15 times based on ranges of 12 samples of 20 observations each. Also, calculate the sample mean and sample standard deviation for these 15 estimated standard deviations.
 - **SOL'N:** We use a Matlab[®] program, (see StatsControlChartXbarEx1.m file), to perform calculations based on the following equations from [1]:

$$R_i = x_{i,\max} - x_{i,\min}$$
 $\overline{R} = \frac{1}{k} \sum_{i=1}^{k} R_i$ $\hat{\sigma} = \frac{\overline{R}}{d_2}$

where k = total number of samples being considered

- i = index designating sample
- x_{ij} = observations available for sample *i*
- d_2 = number of observations in each sample
- $\hat{\sigma}$ = estimated value of σ

Results for one run of the program are as follows:

$\hat{\sigma}_1 = 0.969$	$\hat{\sigma}_2 = 1.032$	$\hat{\sigma}_3 = 1.057$	$\hat{\sigma}_4 = 0.974$	$\hat{\sigma}_5 = 1.072$
$\hat{\sigma}_6 = 1.084$	$\hat{\sigma}_7 = 1.044$	$\hat{\sigma}_8 = 1.102$	$\hat{\sigma}_9 = 1.047$	$\hat{\sigma}_{10}=0.982$
$\hat{\sigma}_{11} = 1.025$	$\hat{\sigma}_{12} = 1.026$	$\hat{\sigma}_{13} = 1.028$	$\hat{\sigma}_{14} = 1.016$	$\hat{\sigma}_{15} = 0.994$

The calculated mean of the calculated $\hat{\sigma}$'s is within a few percent of the true σ , and the standard deviation of the calculated $\hat{\sigma}$'s is only a few percent of the true σ :

$$\overline{x}_{\hat{\sigma}} = 1.0302$$
$$s_{\hat{\sigma}} = 0.0393$$

REF: [1] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, *Probability and Statistics for Engineers and Scientists*, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.