Ex: A company that launches satellites is wondering whether the likelihood of successful launches is really $p=0.9$. They decide to do a 1 -sided hypothesis test with significance level $\alpha=10 \%=0.10$.

The following information about launches is gathered:

$$
n=3 \quad x=2 \text { successful launches } \quad \bar{x}=x / n=2 / 3
$$

The null and alternate hypotheses are as follows:
$H_{0}: p=p_{0}$ (the Null hypothesis)
$H_{A}: p<p_{0}$ (the Alternative hypothesis)
Determine whether the null hypothesis should be rejected.

Sol'n: We use the binomial distribution to compute the probability that there would be two or fewer successful launches if $p=0.9$. Note: $q=0.1$.

$$
P(X \leq 2)=\sum_{i=0}^{2} P(X=i)={ }_{3} C_{0} p^{0} q^{3}+{ }_{3} C_{1} p^{1} q^{2}+{ }_{3} C_{2} p^{2} q^{1}
$$

or

$$
P(X \leq 2)=1 \cdot 0.1^{3}+3 \cdot 0.9^{1} \cdot 0.1^{2}+3 \cdot 0.9^{2} \cdot 0.1
$$

or

$$
P(X \leq 2)=0.001+0.027+0.243=0.271
$$

Because $0.271>\alpha$, we do not reject H_{0}.

