- **TOOL:** The signed rank test is a nonparametric test of the null hypothesis that the unknown mean, μ , of a process is equal to the known mean, μ_0 , of another process:
 - $H_0: \ \mu = \mu_0$ $H_1: \ \mu \neq \mu_0$

To use the signed rank test, we require a symmetric probability density function, (i.e., distribution), for observations so the median and the mean are equal.

First, we sample the new process *N* times, obtaining observations x_i . From the x_i and the known mean μ_0 of the second process, we compute the distances, d_i , of the observations from μ_0 :

 $d_i = x_i - \mu_0$

Second, we discard samples equal to μ_0 , if any, and reduce N accordingly.

Third, we rank the distances, d_i , in order of their absolute value (i.e., magnitude) from lowest, (rank = 1), to highest, (rank = N). If two or more d_i have the same magnitude, they are all assigned the average value of their ranks. If four d_i 's have the same magnitude and correspond to ranks 3, 4, 5, and 6, for example, then all four d_i 's are assigned a rank of (3 + 4 + 5 + 6)/4 = 4.5.

Fourth, we compute the sum, w_{-} , of the ranks for negative d_i , and the sum, w_{+} , of the ranks for positive d_i .

 $w_{-} = \text{sum of ranks of } d_i < 0$ $w_{+} = \text{sum of ranks of } d_i > 0$

Fifth, we define *w* to be the smaller of w_{-} and w_{+} :

 $w \equiv \text{lesser of } w_- \text{ and } w_+$

Sixth, we compare *w* with a critical value, w_{α} , from a table, such as Table A.17 of [1], for the desired significance level, α . If $w \le w_{\alpha}$, then we reject H_0 .

NOTE: We can also test one-sided alternative hypotheses as follows:

*H*₁: $\mu < \mu_0$ reject *H*₀ if $w_+ \le w_\alpha$ *H*₁: $\mu > \mu_0$ reject *H*₀ if $w_- \le w_\alpha$

DEFINITIONS:

- μ_0 = known mean of existing process
- μ = unknown mean of new process
- N = total number of observations (data points) made
- i = index designating which sample (treatment) is being considered
- x_i = value measured for observation (data point) *i*
- d_i = distance of observation (data point) *i* from known mean, μ_0
- w_{-} = sum of ranks of observations with negative distances
- $w_+ = \text{sum of ranks of observations with positive distances}$
- $w \equiv \text{lesser of } w_- \text{ and } w_+$
- $w_{\alpha} = \text{critical value of } w \text{ for rejecting } H_0$
- α = significance level for rejecting null hypothesis
- **DERIV:** Following the description presented in [2], the signs of the d_i may be thought of as outcomes of Bernoulli trials. That is, the signs are either positive or negative. If $\mu = \mu_0$, then positive and negative signs are equally likely. Thus, p = q = 1/2 for the attendant Binomial distribution. (Note that this requires a symmetric distribution so that the mean and median have the same value.)

Taking the logic a step further, the x_i are equally likely to have any rank. This means that the probability of any one particular pattern of + and – signs for the ranked distances is $1/2^N$.

If we start with the most extreme patterns in terms of w_- or w_+ values, such as all -'s or all +'s and work toward the least extreme pattern of half -'s and half +'s, we can determine what value of w_- or w_+ encompasses a set of patterns with total probability as close as possible to α without exceeding it. This yields the critical value, w_{α} .

NOTE: Finding w_{α} is straightforward but tedious. Thus, it is convenient to look up w_{α} values in a table.

- **REF:** [1] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, *Probability and Statistics for Engineers and Scientists*, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.
 - [2] Anthony J. Hayter, *Probability and Statistics for Engineers and Scientists*, 2th Ed., Pacific Grove, CA: Duxbury, 2002.