DEF: Sample Variance =
$$S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

DEF: Computed Sample Variance =
$$s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2$$

DEF: Sample Standard Deviation =
$$S = \sqrt{S^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2}$$

DEF: Computed Standard Deviation =
$$s = \sqrt{s^2} = \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{x})^2}$$

WHERE n = number of samples

 $X_i = \text{random variables representing } n \text{ samples (assumed independent and identically distributed)}$

 \overline{X} = random variable representing sample mean

 $x_i = n$ actual sample values

 \bar{x} = computed sample mean