TOOL: The random variable T, defined as follows, is the sampled data analogue of a standard normal (or gaussian) distribution. Because the value of T depends on S, however, T has a t-distribution that differs slightly from the standard normal (or gaussian) distribution.

$$
T \equiv \frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

where
$n \equiv$ number of data points, X_{i}, (which are independent and normally distributed with mean μ and variance σ)

$$
\begin{aligned}
& \bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i} \equiv \text { sample mean } \\
& S^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \equiv \text { sample variance }
\end{aligned}
$$

The probability density function of T is a t-distribution with $v=n-1$ degrees of freedom:

$$
f_{T}(t)=\frac{\Gamma((v+1) / 2)}{\Gamma(v / 2) \sqrt{\pi v}}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2}
$$

DERIV: The first step is to express T in terms of random variables with known distributions:

$$
T=\frac{Z}{\chi / \sqrt{v}}
$$

where

$$
Z \equiv \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { and } \quad \chi^{2} \equiv v \frac{S^{2}}{\sigma^{2}}
$$

As shown in other Conceptual Tools, Z has a standard normal (or gaussian) distribution, and χ^{2} has a chi-squared distribution with $v=n-1$ degrees of freedom:

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}
$$

$$
f_{\chi^{2}}(x)= \begin{cases}\frac{1}{2^{v / 2} \Gamma(v / 2)} x^{(v / 2)-1} e^{-x / 2} & x>0 \\ 0 & x \leq 0\end{cases}
$$

As shown in another tool, Z and χ^{2} are also independent. This allows us to write the joint distribution of Z and χ^{2} as the product of the respective probability density functions for Z and χ^{2} :

$$
f(z, x)= \begin{cases}\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \frac{1}{2^{v / 2} \Gamma(v / 2)} x^{(v / 2)-1} e^{-x / 2} & x>0 \\ 0 & x \leq 0\end{cases}
$$

To find the probability density for T, we consider the cumulative distribution for T and take its derivative:

$$
f_{T}(t)=\frac{d}{d t} F_{T}(t)=\frac{d}{d t} P(T \leq t)=\frac{d}{d t} \int_{-\infty}^{\infty} \int_{\frac{z}{\sqrt{x} / \sqrt{v}}=t}^{\infty} f(z, x) d x d z
$$

Note: We treat the case of $t>0$. We have t in the lower limit in this case because larger values of x give smaller values of t. For the case of $t<0$, we would integrate from $-\infty$ to t.

We move the derivative inside the outer integral and write the lower limit in terms of the x more clearly:

$$
f_{T}(t)=\int_{-\infty}^{\infty}\left[\frac{d}{d t} \int_{x=v \frac{z^{2}}{t^{2}}}^{\infty} f(z, x) d x\right] d z
$$

The chain rule yields an interpretation of the derivative of the integral:

$$
\frac{d}{d t} \int_{x=v \frac{z^{2}}{t^{2}}}^{\infty} f(z, x) d x=\frac{d}{d x} \int_{x=v \frac{z^{2}}{t^{2}}}^{\infty} f(z, x) d x \cdot \frac{d x}{d t}
$$

or

$$
\frac{d}{d t} \int_{x=v \frac{z^{2}}{t^{2}}}^{\infty} f(z, x) d x=-\left.f(z, x)\right|_{x=v} \frac{z^{2}}{t^{2}} \cdot v \frac{-2 z^{2}}{t^{3}}
$$

Making this substitution, we have the following expression:

$$
f_{T}(t)=\left.\int_{-\infty}^{\infty} f(z, x)\right|_{x=v} \frac{z^{2}}{t^{2}} \cdot v \frac{2 z^{2}}{t^{3}} d z
$$

Now we use the expression for $f(z, x)$, assuming $t>0$:

NOTE: We have the condition that $z>0$ because the definition of T requires $Z>0$ to achieve $T>0$. (X and \sqrt{X} are always positive.)

Incorporating the constraint on z into the lower limit of the outer integral yields the following expression:

$$
f_{T}(t)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \frac{1}{2^{v / 2} \Gamma(v / 2)}\left(\frac{v z^{2}}{t^{2}}\right)^{(v / 2)-1} e^{-\left(\frac{v z^{2}}{t^{2}}\right) / 2} v \frac{2 z^{2}}{t^{3}} d z
$$

It is helpful to define a term for the constants:

$$
k=2 \frac{1}{\sqrt{2 \pi}} \frac{1}{2^{v / 2} \Gamma(v / 2)} v \cdot v^{(v / 2)-1}=\frac{1}{\sqrt{\pi}} \frac{1}{2^{(v-1) / 2} \Gamma(v / 2)} v^{v / 2}
$$

Using this new term, we have the following expression:

$$
f_{T}(t)=k \int_{0}^{\infty} e^{-z^{2} / 2}\left(\frac{z^{2}}{t^{2}}\right)^{(v / 2)-1} e^{-\left(\frac{v z^{2}}{t^{2}}\right) / 2}\left(\frac{z^{2}}{t^{2}}\right) \frac{1}{t} d z
$$

or

$$
f_{T}(t)=k \int_{0}^{\infty} e^{-z^{2}\left(1+\frac{v}{t^{2}}\right) / 2}\left(\frac{z^{2}}{t^{2}}\right)^{v / 2} \frac{1}{t} d z
$$

We define the following variable that allows us to use a convenient change of variables:

$$
z_{t} \equiv z \sqrt{1+\frac{v}{t^{2}}}
$$

We have the following relationships for the change of variables:

$$
\frac{d z_{t}}{\sqrt{1+\frac{v}{t^{2}}}}=d z, \quad z=0 \Rightarrow z_{t}=0, \quad z \rightarrow \infty \Rightarrow z_{t} \rightarrow \infty
$$

and

$$
\frac{z^{2}}{t^{2}}=\frac{z_{t}^{2}}{1+\frac{v}{t^{2}}} \cdot \frac{1}{t^{2}}=z_{t}^{2} \frac{1}{t^{2}+v}=z_{t}^{2} \frac{1}{v} \frac{1}{1+\frac{t^{2}}{v}}=z_{t}^{2} v^{-1}\left(1+\frac{t^{2}}{v}\right)^{-1}
$$

In terms of z_{t} we have the following integral expression:

$$
f_{T}(t)=k \int_{0}^{\infty} e^{-z_{t}^{2} / 2}\left(z_{t}^{2}\right)^{v / 2}(v)^{-v / 2}\left(1+\frac{t^{2}}{v}\right)^{-v / 2} \frac{1}{\sqrt{v}} \frac{d z_{t}}{\sqrt{1+\frac{t^{2}}{v}}}
$$

or

$$
f_{T}(t)=k v^{-(v+1) / 2}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2} \int_{0}^{\infty} e^{-z_{t}^{2} / 2}\left(z_{t}^{2}\right)^{v / 2} d z_{t}
$$

We change variables again in order to make the integrand have the form of a chi-squared distribution:

$$
w \equiv z_{t}^{2}
$$

We have the following relationships for the change of variables:

$$
\frac{d w}{2 z_{t}}=\frac{d w}{2 \sqrt{w}}=d z_{t}, \quad z_{t}=0 \Rightarrow w=0, z_{t} \rightarrow \infty \Rightarrow w \rightarrow \infty
$$

In terms of w we have the following integral expression:

$$
f_{T}(t)=k v^{-(v+1) / 2}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2} \int_{0}^{\infty} w^{v / 2} e^{-w / 2} \frac{d w}{2 \sqrt{w}}
$$

By moving appropriate constants inside the integral, we obtain the integral of an entire chi-squared distribution with $v+1$ degrees of freedom. In other words the probability represented by the following integral must equal unity:

$$
\int_{0}^{\infty} \frac{1}{2^{(v+1) / 2} \Gamma((v+1) / 2)} w^{((v+1) / 2)-1} e^{-w / 2} d w=1
$$

It follows that we have the following expression for the probability density function for T :

$$
f_{T}(t)=k 2^{(v-1) / 2} \Gamma((v+1) / 2) v^{-(v+1) / 2}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2}
$$

Simplification of the constants yields the final result:

$$
f_{T}(t)=\frac{\Gamma((v+1) / 2)}{\Gamma(v / 2) \sqrt{\pi v}}\left(1+\frac{t^{2}}{v}\right)^{-(v+1) / 2}
$$

