TOOL: \quad The variables Z and χ^{2}, used in the derivation of the t-distribution are independent.

$$
T=\frac{\bar{X}-\mu}{S / \sqrt{n}}
$$

The relevant definitions are as follows:

$$
\begin{aligned}
& n \equiv \text { number of data points, } X_{i}, \text { (which are independent and normally distributed) } \\
& v \equiv n-1 \\
& \bar{X} \equiv \frac{1}{n} \sum_{i=1}^{n} X_{i} \equiv \text { sample mean } \\
& S^{2} \equiv \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \equiv \text { sample variance } \\
& Z \equiv \frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \quad \text { and } \quad \chi^{2} \equiv v \frac{S^{2}}{\sigma^{2}}
\end{aligned}
$$

PROOF: For convenience, we define the following standard normal random variables:

$$
Z_{i} \equiv \frac{X_{i}-\mu}{\sigma}
$$

We may define Z in terms of the Z_{i} :

$$
Z \equiv \frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\sqrt{n} \frac{1}{n} \sum_{i=1}^{n} \frac{X_{i}-\mu}{\sigma}=\frac{1}{\sqrt{n}} \sum_{i=1}^{n} Z_{i}
$$

We may also define χ^{2} in terms of the Z_{i} :

$$
\chi^{2}=\frac{n-1}{\sigma^{2}} \cdot \frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}=\sum_{i=1}^{n}\left(\frac{X_{i}-\mu}{\sigma}-\frac{\bar{X}-\mu}{\sigma}\right)^{2}
$$

or

$$
\chi^{2}=\sum_{i=1}^{n}\left(Z_{i}-\frac{1}{n} \sum_{j=1}^{n} Z_{j}\right)^{2}
$$

To prove the independence of Z and χ^{2}, we show that $E\left(Z \cdot \chi^{2}\right)=E(Z) E\left(\chi^{2}\right)$.
Since $E(Z)=0$, however, this means we will show that $E\left(Z ; \chi^{2}\right)=0$.

We employ our definitions of Z and χ^{2} in terms Z_{i} 's at the outset:

$$
E\left(Z \cdot \chi^{2}\right)=E\left(\sqrt{n} \frac{1}{n} \sum_{i=1}^{n} Z_{i} \cdot \sum_{i=1}^{n}\left(Z_{i}-\frac{1}{n} \sum_{j=1}^{n} Z_{j}\right)^{2}\right)
$$

We may rewrite the second summation as follows, (see [1], p. 233):

$$
E\left(Z \cdot \chi^{2}\right)=\frac{1}{\sqrt{n}} E\left(\sum_{i=1}^{n} Z_{i} \cdot\left[\sum_{i=1}^{n} Z_{i}^{2}-\frac{1}{n}\left(\sum_{i=1}^{n} Z_{i}\right)^{2}\right]\right)
$$

Multiplying by n / n and rearranging slightly yields the following expression:

$$
E\left(Z \cdot \chi^{2}\right)=\frac{1}{n \sqrt{n}} E\left(n \sum_{i=1}^{n} Z_{i}^{2} \sum_{i=1}^{n} Z_{i} \cdot-\left(\sum_{i=1}^{n} Z_{i}\right)^{3}\right)
$$

The Z_{i} are independent with mean zero, allowing us to eliminate terms that involve products of different $Z \mathrm{~s}$. In other words, the only terms that will contribute to the expected value will be those involving a Z_{i} that is cubed.

$$
\begin{aligned}
& E\left(Z \cdot \chi^{2}\right)=\frac{1}{n \sqrt{n}} E\left(n \sum_{i=1}^{n} Z_{i}^{3}-\sum_{i=1}^{n} Z_{i}^{3}\right)=\frac{1}{n \sqrt{n}} E\left((n-1) \sum_{i=1}^{n} Z_{i}^{3}\right) \\
& E\left(Z \cdot \chi^{2}\right)=\frac{n-1}{n \sqrt{n}} E\left(\sum_{i=1}^{n} Z_{i}^{3}\right)=\frac{n-1}{n \sqrt{n}} n E\left(Z_{1}^{3}\right)=\frac{n-1}{\sqrt{n}} E\left(Z_{1}^{3}\right)
\end{aligned}
$$

Since a standard normal distribution is symmetric around zero, the expected value of each cubed term is zero, however.

$$
E\left(Z \cdot \chi^{2}\right)=0
$$

It follows that Z and χ^{2} are independent.

REF: [1] Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, and Keying Ye, Probability and Statistics for Engineers and Scientists, 8th Ed., Upper Saddle River, NJ: Prentice Hall, 2007.

