TOOL: For samples from a normal (or gaussian) distribution with mean μ and variance σ^{2}, the distribution of the sample mean, \bar{X}, for n samples is normal (or gaussian) with the following mean and variance:

$$
\mu_{\bar{X}}=\mu \quad \text { and } \quad \sigma_{\bar{X}}^{2}=\frac{\sigma^{2}}{n}
$$

It follows that random variable Z defined as follows has a standard normal (or gaussian) distribution:

$$
Z=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}
$$

Proof: The sample mean is the average of n independent samples.

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}=\frac{1}{n} X_{1}+\ldots+\frac{1}{n} X_{n}
$$

Since the sample mean is a linear combination of independent samples, it follows that the mean value of \bar{X} is the linear combination of the mean values of the X_{i}.

$$
\mu_{\bar{X}}=\frac{1}{n} \mu+\ldots+\frac{1}{n} \mu=\frac{n}{n} \mu=\mu
$$

Since the sample mean is a linear combination of independent samples, it also follows that the variance of the sample mean is a sum of variances of the X_{i} each multiplied by the square of their coefficient.

$$
\sigma_{\bar{X}}^{2}=\left(\frac{1}{n}\right)^{2} \sigma^{2}+\ldots+\left(\frac{1}{n}\right)^{2} \sigma^{2}=\frac{n}{n^{2}} \sigma^{2}=\frac{1}{n} \sigma^{2}
$$

Finally, we note that a linear combination of independent normal (or gaussian) random variables is a normal (or gaussian) random variable.

