Ex：Using superposition，find an expression for v_{1} in the circuit shown below．

Sol＇n I：We first illustrate brute force attempts at solution using the node－voltage method and superposition．When the suffering is complete，we consider judicious use of the reference placement，superposition，and Kirchhoff＇s laws to simplify matters．

For the node－voltage method，we label a reference and any nodes where three or more components are joined．

Before going any further，we define variables for dependent sources in terms of node voltages．

$$
\begin{aligned}
& v_{\mathrm{x}}=v_{\mathrm{b}}-v_{\mathrm{c}} \\
& i_{\mathrm{x}}=\frac{v_{\mathrm{x}}}{R_{2}}=\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{R_{2}}
\end{aligned}
$$

We use the above definitions whenever we write v_{x} or i_{x}.
The blue indicates a supernode. We proceed to sum currents out of nodes, starting with the supernode, (two nodes connected by just a voltage source), for which we sum currents out of the blue bubble. The key is to define currents in terms of node voltages.

$$
\frac{v_{\mathrm{a}}-\left(v_{\mathrm{b}}+v_{\mathrm{s}}\right)}{R_{1}}+\beta \frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{R_{2}}+\frac{v_{\mathrm{c}}-v_{\mathrm{b}}}{R_{2}}+\frac{v_{\mathrm{c}}}{R_{3}}=0 \mathrm{~A}
$$

or

$$
\frac{v_{\mathrm{a}}-\left(v_{\mathrm{b}}+v_{\mathrm{s}}\right)}{R_{1}}+(\beta-1) \frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{R_{2}}+\frac{v_{\mathrm{c}}}{R_{3}}=0 \mathrm{~A}
$$

or, if we write things in a form suitable for matrix solution,

$$
\begin{equation*}
\frac{1}{R_{1}} v_{\mathrm{a}}+\left(-\frac{1}{R_{1}}+\frac{\beta-1}{R_{2}}\right) v_{\mathrm{b}}+\left(\frac{1-\beta}{R_{2}}+\frac{1}{R_{3}}\right) v_{\mathrm{c}}=\frac{v_{\mathrm{s}}}{R_{1}} \tag{1}
\end{equation*}
$$

The voltage equation is simpler:

$$
v_{\mathrm{a}}-v_{\mathrm{c}}=\alpha\left(v_{\mathrm{b}}-v_{\mathrm{c}}\right)
$$

or, in matrix compatible form,

$$
\begin{equation*}
(1) v_{\mathrm{a}}+(-\alpha) v_{\mathrm{b}}+(\alpha-1) v_{\mathrm{c}}=0 \mathrm{~V} \tag{2}
\end{equation*}
$$

Finally, we have the v_{b} node:

$$
\frac{v_{\mathrm{b}}+v_{\mathrm{s}}-v_{\mathrm{a}}}{R_{1}}+\frac{v_{\mathrm{b}}-v_{\mathrm{c}}}{R_{2}}+i_{\mathrm{s}}=0 \mathrm{~A}
$$

or, in matrix compatible form,

$$
\begin{equation*}
\left(-\frac{1}{R_{1}}\right) v_{a}+\left(\frac{1}{R_{1}}+\frac{1}{R_{2}}\right) v_{b}+\left(-\frac{1}{R_{2}}\right) v_{c}=-\frac{v_{s}}{R_{1}}-i_{s} \tag{3}
\end{equation*}
$$

Now what? We solve the equations by hand, introducing terms to save writing:

$$
X \equiv \frac{R_{1}(1-\beta)}{R_{2}} \quad \text { and } \quad Y \equiv \frac{R_{1}}{R_{2}}
$$

Multiplying (1) by R_{1} and (3) by $-R_{1}$ gives us the following three equations:

$$
\begin{align*}
& \text { (1) } v_{\mathrm{a}}+(-1-X) v_{\mathrm{b}}+\left(X+R_{1} / R_{3}\right) v_{\mathrm{c}}=v_{\mathrm{s}} \tag{1'}\\
& \text { (1) } v_{\mathrm{a}}+(-\alpha) v_{\mathrm{b}}+(\alpha-1) v_{\mathrm{c}}=0 \mathrm{~V} \tag{2'}\\
& \text { (1) } \mathrm{v}_{\mathrm{a}}+(-1-Y) v_{\mathrm{b}}+(Y) v_{\mathrm{c}}=v_{\mathrm{s}}+i_{\mathrm{s}} R_{1} \tag{3'}
\end{align*}
$$

Solving (2') for v_{a}, we may substitute the result into (1^{\prime}) and (3^{\prime}).

$$
\begin{equation*}
(1) v_{\mathrm{a}}=(\alpha) v_{\mathrm{b}}+(1-\alpha) v_{\mathrm{c}} \tag{2"}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\alpha v_{\mathrm{b}}+(1-\alpha) v_{\mathrm{c}}+(-1-X) v_{\mathrm{b}}+\left(X+R_{1} / R_{3}\right) v_{\mathrm{c}}=v_{\mathrm{s}} \tag{1"}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha v_{\mathrm{b}}+(1-\alpha) v_{\mathrm{c}}+(-1-Y) v_{\mathrm{b}}+(Y) v_{\mathrm{c}}=v_{s}+i_{\mathrm{s}} R_{1} \tag{3"}
\end{equation*}
$$

Cleaning things up, we have

$$
\begin{equation*}
(\alpha-1-X) v_{\mathrm{b}}+\left(1-\alpha+X+R_{1} / R_{3}\right) v_{\mathrm{c}}=v_{\mathrm{s}} \tag{1'"}
\end{equation*}
$$

and

$$
\begin{equation*}
(\alpha-1-Y) v_{\mathrm{b}}+(1-\alpha+Y) v_{\mathrm{c}}=v_{s}+i_{\mathrm{s}} R_{1} \tag{3'"}
\end{equation*}
$$

We can do a bit more with (1"') and (3"'):

$$
(\alpha-1-X) v_{\mathrm{b}}+\left(-\alpha+1+X+R_{1} / R_{3}\right) v_{\mathrm{c}}=v_{\mathrm{s}}
$$

or

$$
\begin{equation*}
v_{\mathrm{b}}+\left(-1+\frac{R_{1} / R_{3}}{\alpha-1-X}\right) v_{\mathrm{c}}=\frac{v_{\mathrm{s}}}{\alpha-1-X} \tag{1""}
\end{equation*}
$$

and

$$
(\alpha-1-Y) v_{\mathrm{b}}+(-\alpha+1+Y) v_{\mathrm{c}}=v_{s}+i_{\mathrm{s}} R_{1}
$$

or

$$
\begin{equation*}
v_{\mathrm{b}}+(-1) v_{\mathrm{c}}=\frac{v_{s}+i_{\mathrm{s}} R_{1}}{\alpha-1-Y} \tag{3""}
\end{equation*}
$$

Solving（ $3^{\prime \prime \prime}$ ）for v_{c} ，we may substitute into（ $1^{\prime \prime \prime}$ ），leaving only v_{b} ． Keeping v_{b} instead of v_{c} is convenient since we want to find v_{1} ．

$$
v_{\mathrm{c}}=v_{\mathrm{b}}-\frac{v_{s}+i_{\mathrm{s}} R_{1}}{\alpha-1-Y}
$$

Substituting into（1＂＇），we have

$$
v_{\mathrm{b}}+\left(-1+\frac{R_{1} / R_{3}}{\alpha-1-X}\right)\left(v_{\mathrm{b}}-\frac{v_{s}+i_{\mathrm{s}} R_{1}}{\alpha-1-Y}\right)=\frac{v_{\mathrm{s}}}{\alpha-1-X}
$$

or

$$
\left(\frac{R_{1} / R_{3}}{\alpha-1-X}\right) v_{\mathrm{b}}=\frac{v_{\mathrm{s}}}{\alpha-1-X}+\left(-1+\frac{R_{1} / R_{3}}{\alpha-1-X}\right)\left(\frac{v_{s}+i_{\mathrm{s}} R_{1}}{\alpha-1-Y}\right)
$$

Ugh！We struggle on．．．Multiply both sides by $\alpha-1-X$ ．

$$
\left(R_{1} / R_{3}\right) v_{\mathrm{b}}=v_{\mathrm{s}}+\left(-(\alpha-1-X)+R_{1} / R_{3}\right)\left(\frac{v_{s}+i_{\mathrm{s}} R_{1}}{\alpha-1-Y}\right)
$$

or

$$
\left(R_{1} / R_{3}\right) v_{\mathrm{b}}=\left(\frac{\alpha-1-Y-(\alpha-1-X)+R_{1} / R_{3}}{\alpha-1-Y}\right) v_{\mathrm{s}}+\left(-(\alpha-1-X)+R_{1} / R_{3}\right)\left(\frac{i_{\mathrm{s}} R_{1}}{\alpha-1-Y}\right)
$$

or

$$
\left(R_{1} / R_{3}\right) v_{\mathrm{b}}=\left(\frac{X-Y+R_{1} / R_{3}}{\alpha-1-Y}\right) v_{\mathrm{s}}+\left(X+1-\alpha+R_{1} / R_{3}\right)\left(\frac{i_{\mathrm{s}} R_{1}}{\alpha-1-Y}\right)
$$

Since $X-Y=\beta R_{1} / R_{2}$ ，if we multiply by R_{3} / R_{1} ，we have

$$
\begin{equation*}
v_{\mathrm{b}}=\left(\frac{\beta R_{3} / R_{2}+1}{\alpha-1-Y}\right) v_{\mathrm{s}}+\left((X+1-\alpha) R_{3}+R_{1}\right)\left(\frac{i_{\mathrm{s}}}{\alpha-1-Y}\right) \tag{1"""}
\end{equation*}
$$

Very well, but we want v_{1}. Curiously, things are much better when we try to find v_{1}.

$$
v_{1}=v_{b}+v_{s}-v_{a}
$$

where

$$
\begin{equation*}
(1) v_{\mathrm{a}}=(\alpha) v_{\mathrm{b}}+(1-\alpha) v_{\mathrm{c}} \tag{2"}
\end{equation*}
$$

so

$$
v_{1}=v_{b}+v_{s}-\alpha v_{\mathrm{b}}-(1-\alpha) v_{\mathrm{c}}=v_{s}+(1-\alpha)\left(v_{\mathrm{b}}-v_{\mathrm{c}}\right)
$$

where

$$
\begin{equation*}
v_{\mathrm{b}}+(-1) v_{\mathrm{c}}=\frac{v_{S}+i_{\mathrm{s}} R_{1}}{\alpha-1-Y} \tag{3""}
\end{equation*}
$$

so

$$
v_{1}=v_{s}+(1-\alpha) \frac{v_{\mathrm{s}}+i_{s} R_{1}}{\alpha-1-Y}=v_{s}+(1-\alpha) \frac{v_{\mathrm{s}}+i_{s} R_{1}}{\alpha-1-R_{1} / R_{2}}
$$

or

$$
v_{1}=\frac{\alpha-1-R_{1} / R_{2}}{\alpha-1-R_{1} / R_{2}} v_{s}+(1-\alpha) \frac{v_{\mathrm{s}}+i_{s} R_{1}}{\alpha-1-R_{1} / R_{2}}
$$

or

$$
v_{1}=\frac{\alpha-1-R_{1} / R_{2}+1-\alpha}{\alpha-1-R_{1} / R_{2}} v_{s}+(1-\alpha) \frac{i_{s} R_{1}}{\alpha-1-R_{1} / R_{2}}
$$

or

$$
v_{1}=\frac{-R_{1} / R_{2}}{\alpha-1-R_{1} / R_{2}} v_{s}+(1-\alpha) \frac{i_{s} R_{1}}{\alpha-1-R_{1} / R_{2}}
$$

or

$$
v_{1}=\frac{-R_{1}}{R_{2}(\alpha-1)-R_{1}} v_{s}+(1-\alpha) \frac{i_{s} R_{1} R_{2}}{R_{2}(\alpha-1)-R_{1}}
$$

or

$$
v_{1}=\frac{v_{\mathrm{s}} R_{1}-i_{s} R_{1} R_{2}(1-\alpha)}{R_{2}(1-\alpha)+R_{1}}
$$

Wait. What happened to the mess we had before in (1""")? The above solution didn't even use β ! Maybe there is a simpler way to have this problem.

Sol'n II: We use superposition and some basic ideas, like Kirchhoff's laws.
We turn on one independent source at a time. Dependent sources stay on.
case I: $\quad V_{s}$ on, i_{s} off $=$ open

If we examine where i_{x} goes, we discover that i_{x} flows thru R_{1}. Thus, a v-loop around the upper left yields a value for i_{x}.

Note that $v_{x 1}=i_{x 1} R_{2}$.

$$
\begin{gathered}
v \text {-loop: } V_{5}+i_{x_{1}} R_{1}-i_{x} \propto R_{2}+i_{x_{1}} R_{2}=0 V \\
\text { or } i_{x_{1}}\left(R_{1}+R_{2}-\alpha R_{2}\right)=-V_{S} \\
\text { or } i_{x 1}=\frac{-V_{5}}{R_{1}+R_{2}-\alpha R_{2}}
\end{gathered}
$$

Using Ohm's law to find v_{11} we have

$$
v_{11}=-i_{x} R_{1}=v_{S} \frac{R_{1}}{R_{1}+R_{2}-\alpha R_{2}}
$$

case II: $V_{\$}$ off $=$ wire, i_{s} on

We can always use node-voltage. Putting a reference in the center is convenient.

Consider the $v_{x 2}$ node:

$$
\begin{aligned}
& \frac{v_{x 2}-\alpha v_{x 2}}{R_{1}}+\frac{v_{x 2}}{R_{2}}+i_{5}=O A \\
& \text { or } v_{x_{2}}\left(\frac{1}{R_{1}}-\frac{\alpha}{R_{1}}+\frac{1}{R_{2}}\right)=-i_{5} \\
& \text { or } v_{x 2}\left(R_{2}-\alpha R_{2}+R_{1}\right)=-i_{5} R_{1} R_{2} \\
& \text { or } v_{x 2}=\frac{-i_{5} R_{1} R_{2}}{R_{1}+R_{2}(1-\alpha)} \\
& v_{12}=v_{x 2}-\alpha v_{x 2}=(1-\alpha) v_{x_{2}} \\
& \text { or } v_{12}=\frac{-i_{5} R_{1} R_{2}(1-\alpha)}{R_{1}+R_{2}(1-\alpha)}
\end{aligned}
$$

Now we sum the results from the two cases.

$$
v_{1}=v_{11}+v_{12}=\frac{v_{5} R_{1}-i_{5} R_{1} R_{2}(1-\alpha)}{R_{1}+R_{2}(1-\alpha)}
$$

Consistency checks follow.

We perform some consistency checks. We set some component values to zero to create a circuit with an obvious solution. Then we see if our above expression for V_{1} gives the correct answer.

Check 1: Set $R_{2}=0$ so $v_{x}=0 v$. set $\beta=0$ so $\beta i_{x}=0 A$.

From the v-loop in the upper left we have $v_{1}=v_{s}$.

Our answer above gives

$$
v_{1}=\frac{v_{S} R_{1}-i_{S} R_{1}(0)^{0}(1-\alpha)}{R_{1}+O(1-\alpha)}=v_{S}
$$

Check 2: Set $R_{1}=0$, then $v_{1}=0 V$.
Our answer for v, gives

$$
v_{1}=\frac{v_{5}(0)-i_{5}(0) R_{2}(1-\alpha)}{0+R_{2}(1-\alpha)}=0
$$

One more check follows.

Check 3：set $v_{s}=0 V$ and $\alpha=0$ ．

Careful inspection reveals that R_{1} and R_{2} are in parallel and i_{5} flows thru R_{1} and R_{2} ．

So we have a current divider， and voltage v ，is given by

$$
v_{1}=-i_{5} \frac{R_{2}}{R_{1}+R_{2}} \cdot R_{1}
$$

Our answer above gives

$$
\begin{aligned}
v_{1} & =\frac{0 R_{1}^{0}-i_{5} R_{1} R_{2}(1-0)}{R_{1}+R_{2}(1-0)} \\
\text { or } v_{1} & =\frac{-i_{5} R_{1} R_{2}}{R_{1}+R_{2}}
\end{aligned}
$$

All checks thus far are satisfied．

