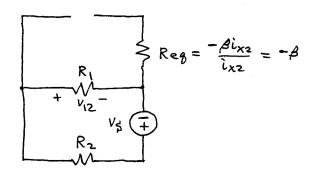

Ex:

Using superposition, derive an expression for v_1 that contains no circuit quantities other than i_s , v_S , R_1 , R_2 , and β , where $\beta > 0$.


Soln: case I: is on, vs off

We have a current divider with $R_1 \notin R_2$. $i_{R1} = i_5 \cdot \frac{R_2}{R_1 + R_2}$

$$V_{II} = i_{RI} \cdot R_I = i_{\$} \cdot R_I \parallel R_2$$

case II: is off, vs on

We have voltage divider.

$$v_{12} = v_{\$} \cdot \frac{R_1}{R_1 + R_2}$$

Sum vis:

$$v_1 = v_{11} + v_{12} = i_{5} \cdot R_{1} || R_{2} + v_{5} \frac{R_{1}}{R_{1} + R_{2}}$$