Tool: The following procedure defines decision boundaries that may be used to determine whether a point lies in a triangle. The rationale is that a given point, \vec{x}, is on the inside of the triangle if and only if \vec{x} is on the correct side of each edge of the triangle. A vector, \vec{a}, is found for each side of the triangle such that the dot product of \vec{a} and \vec{x} is greater than a know constant if and only if \vec{x} is on the correct side of a particular edge of the triangle. If dot products are large enough for all sides of the triangle, then \vec{x} is inside the triangle. The mathematics of defining the vector \vec{a} is equivalent to creating a decision boundary for a perceptron where the decision boundary corresponds to an edge of the triangle. Thus, \vec{a} is referred to as a decisionboundary vector. The mathematical details of the procedure for finding \vec{a} follow. A 2-dimensional case is described, but the process generalizes to N dimensions in an obvious way.
i) Given two points, \vec{x}_{1} and \vec{x}_{2}, (or N points in N dimensions), defining an edge of a triangle, the decision boundary vector, \vec{a}, is perpendicular to the line segment from \vec{x}_{1} to \vec{x}_{2}. (In N-dimensions, the decision boundary vector, \vec{a}, is perpendicular to a hyper-plane containing vertices of one side, meaning all but one vertex, of the N-dimensional tetrahedron.) It follows that which side of the edge a point \vec{x} lies on may be found by computing the dot product of \vec{x} with \vec{a} and comparing it to an appropriate constant value, $-a_{0}$. In particular, the dot product of \vec{x}_{1} and \vec{x}_{2} with \vec{a} should give the same value, $-a_{0}$. (These calculations correspond to projecting \vec{x}, \vec{x}_{1}, and \vec{x}_{2} onto \vec{a}.)

$$
\left[\begin{array}{c}
\vec{x}_{1}^{T} \\
\vec{x}_{2}^{T}
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
-a_{0} \\
-a_{0}
\end{array}\right]
$$

ii) These calculations may be rearranged to create a matrix equation. The equations, however is underdetermined.

$$
\left[\begin{array}{cc}
1 & \vec{x}_{1}^{T} \\
1 & \vec{x}_{2}^{T}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

iii) To create a solvable system of equations, a third row is needed in the matrix. In addition, the right side is zero. This means that the augmented \vec{a}, which is denoted as \vec{a}_{+}, is unique only to within a scaling constant. Consequently, a third-row equation may be created by adding a third vector whose dot product with \vec{a}_{+}equals an arbitrary nonzero value. This eliminates both the problem of a zero right side and a non-unique solution. The vector forming the third row of the matrix, however, must be linearly independent of the other two vectors. To find such a vector, a cross product may be used. The cross product, which produces a vector, \vec{n}, that is perpendicular (normal) to the vectors in the cross product is computed as the determinant of a matrix [1]:

$$
\vec{n}=\left(1, \vec{x}_{1}\right) \times\left(1, \vec{x}_{2}\right) \times \ldots \times\left(1, \vec{x}_{N-1}\right)=\left|\begin{array}{ccccc}
\vec{e}_{0} & \vec{e}_{1} & \vec{e}_{2} & \ldots & \vec{e}_{N} \\
1 & x_{11} & x_{12} & \ldots & x_{1 N} \\
1 & x_{21} & x_{22} & \ldots & x_{2 N} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
1 & x_{N-1,1} & x_{N-1,2} & \ldots & x_{N-1, N}
\end{array}\right|
$$

where $\vec{e}_{i} \equiv$ unit vector in direction of i th axis
iv) The cross product is added to the matrix to create a solvable system of equations that yields a decision-boundary vector, $\vec{a}_{+}=\left(a_{0}, \vec{a}\right)^{T}$.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1 & \\
\vec{x}_{1}^{T} \\
1 & \\
\vec{x}_{2}^{T} \\
& \vec{n}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& \vec{a}_{+}=\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{ll}
1 & \vec{x}_{1}^{T} \\
1 & \\
\vec{x}_{2}^{T} \\
& \vec{n}
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

v) The final step of the procedure is to determine whether \vec{a}_{+}gives a positive result for points on the inside of the triangle under consideration. This result is determined by computing the dot product $s=\vec{a}_{+}^{T} \circ\left(1, \vec{x}_{N+1}\right)$ where \vec{x}_{N+1} is the unused vertex, (which must lie on the side of the edge toward the inside of the triangle). If $s<0$, then \vec{a}_{+}is replaced with $-\vec{a}_{+}$. The calculation of $s=\vec{a}_{+}^{T} \circ(1, \vec{x})$ now indicates \vec{x} is on the inside of the edge when $s>0$.
Ref: [1] Helmut K. Fishbeck and Kurt H. Fishbeck, Formula,s Facts and Constants, 2nd Ed., Berlin, GDR: Springer-Verlag, 1987.

