TOOL: A hyper-plane is defined by a dot-product formula:

$$y = a_0 + a_1 x_1 + a_2 x_2 + \ldots + a_N x_N = \vec{a} \circ \vec{x}_+$$

where

$$\vec{x}_{+} \equiv (1, x_{1}, x_{2}, \dots, x_{N}) = (1, \vec{x})$$

The following matrix equation is solved by the vector, \vec{a} , that defines the hyper-plane passing through N + 1 specified points, $(x_1, y_1), \dots, (x_N, y_N)$:

1	<i>x</i> ₁₁		x_{1N}	$\begin{bmatrix} a_0 \end{bmatrix}$]	y ₁	7
÷	÷	·.	÷	:	=	:	
1	$x_{N+1,1}$	•••	$x_{N+1,N}$	a_N		<i>УN</i> +1	

or in matrix notation:

 $X_+\vec{a} = \vec{y}$

Assuming the X_+ matrix is full rank, the solution of the above equation yields \vec{a} :

$$\vec{a} = X_+^{-1} \vec{y}$$