TOOL: The following algorithm finds the center point of an *N*-dimensional sphere given N + 1 points, $\vec{x}_0, \vec{x}_1, ..., \vec{x}_N$, and is based on the idea that the center of a sphere lies on bisectors of line segments connecting points on the perimeter:

i) Determine vectors, $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_N$, pointing from one point, \vec{x}_0 , chosen as an anchor point, toward each other point.

ii) By dividing by their lengths, normalize the vectors $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_N$ to create unitlength vectors, $\vec{u}_1, \vec{u}_2, \dots, \vec{u}_N$, pointing from \vec{x}_0 toward each other point.

iii) Find the vector, \vec{r} , whose projection on each unit-length vector, \vec{u}_i , has its endpoint at the midpoint of the line segment from \vec{x}_0 to \vec{x}_i , (i.e. the projection of \vec{r} on \vec{v}_i equals $\vec{v}_i/2$). The projection of \vec{r} on \vec{v}_i is given by the dot product of \vec{r} and \vec{u}_i .

TRIANGULATION DELAUNAY TRIANGULATION Sphere center point (cont.)

$$\vec{r} \circ \vec{u}_i = |\vec{r}| |\vec{u}_i| \cos \theta_i = |\vec{r}| \cos \theta_i = \frac{1}{2} |\vec{v}_i|$$

Group these equations to yield a matrix formula for \vec{r} .

$\begin{bmatrix} \vec{u}_1^T \\ \vec{u}_2^T \\ \vdots \\ \vec{u}_N^T \end{bmatrix}$	$\vec{r} =$	$\frac{\frac{1}{2} \vec{v}_1 }{\frac{1}{2} \vec{v}_2 }$ \vdots $\frac{1}{ \vec{v}_N }$
$\begin{bmatrix} \vec{u}_N^T \end{bmatrix}$		$\frac{1}{2} \vec{v}_N $

Since the \vec{v}_i vectors arise from points on a sphere, they are not dependent. Thus, the matrix equation is nonsingular and always solvable.

$$\vec{r} = \begin{bmatrix} \vec{u}_{1}^{T} \\ \vec{u}_{2}^{T} \\ \vdots \\ \vec{u}_{N}^{T} \end{bmatrix}^{-1} \begin{bmatrix} \frac{1}{2} |\vec{v}_{1}| \\ \frac{1}{2} |\vec{v}_{2}| \\ \vdots \\ \frac{1}{2} |\vec{v}_{N}| \end{bmatrix}$$

iv) The center point, \vec{c} , of the circle is found by summing \vec{x}_0 and \vec{r} .

