Tool: The following algorithm finds the center point of an N-dimensional sphere given $N+1$ points, $\vec{x}_{0}, \vec{x}_{1}, \ldots, \vec{x}_{N}$, and is based on the idea that the center of a sphere lies on bisectors of line segments connecting points on the perimeter:
i) Determine vectors, $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{N}$, pointing from one point, \vec{x}_{0}, chosen as an anchor point, toward each other point.

ii) By dividing by their lengths, normalize the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{N}$ to create unitlength vectors, $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{N}$, pointing from \vec{x}_{0} toward each other point.

iii) Find the vector, \vec{r}, whose projection on each unit-length vector, \vec{u}_{i}, has its endpoint at the midpoint of the line segment from \vec{x}_{0} to \vec{x}_{i}, (i.e. the projection of \vec{r} on \vec{v}_{i} equals $\vec{v}_{i} / 2$). The projection of \vec{r} on \vec{v}_{i} is given by the dot product of \vec{r} and \vec{u}_{i}.

Group these equations to yield a matrix formula for \vec{r}.

$$
\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{N}^{T}
\end{array}\right] \vec{r}=\left[\begin{array}{c}
\frac{1}{2}\left|\vec{v}_{1}\right| \\
\frac{1}{2}\left|\vec{v}_{2}\right| \\
\vdots \\
\frac{1}{2}\left|\vec{v}_{N}\right|
\end{array}\right]
$$

Since the \vec{v}_{i} vectors arise from points on a sphere, they are not dependent. Thus, the matrix equation is nonsingular and always solvable.

$$
\vec{r}=\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{N}^{T}
\end{array}\right]^{-1}\left[\begin{array}{c}
\frac{1}{2}\left|\vec{v}_{1}\right| \\
\frac{1}{2}\left|\vec{v}_{2}\right| \\
\vdots \\
\frac{1}{2}\left|\vec{v}_{N}\right|
\end{array}\right]
$$

iv) The center point, \vec{c}, of the circle is found by summing \vec{x}_{0} and \vec{r}.

