YOUR NAME(S):

PROB: The bandwidth, β , for an *RLC* filter is the difference of cutoff frequencies, ω_{C1} and ω_{C2} :

bandwidth = $\beta = \omega_{C2} - \omega_{C1}$

where the cutoff frequencies satisfy the following equation (obtained by setting the filter gain equal to $1/\sqrt{2}$):

$$\frac{1}{R} \left(\omega L - \frac{1}{\omega C} \right) = \pm 1.$$

Think of ω as *x*, and think of β as the difference between roots of the above equation, which turns out to be a quadratic equation after multiplying both sides by ω . However, the ±1 actually means we have two quadratic equations. So we have four roots! We use the two positive roots. ω_{C2} is the larger of the positive roots, and ω_{C1} is the smaller of the positive roots. The bandwidth is $\beta = \omega_{C2} - \omega_{C1}$. Remember to convert the bandwidth in Hz to bandwidth in rad/s when finding the value of *R*. Curiously, the value of *C* will be absent from your final equation for *R*.

The following information is given:

B = 1600 (bandwidth in Hz) $\beta = 2\pi B$ (to convert frequency in Hz to rad/s) L = 0.1 H

Find the value of R for the given bandwidth.

R = _____