Circuit: The circuit shown below in Fig. 1 produces a rectangular wave with frequency controlled by potentiometer, $R_{\mathrm{a}}, R_{\mathrm{b}}$. The duty cycle varies with v_{ctrl}. For an op-amp such as the LM324 with asymmetric rail voltages, the duty cycle will be greater than 50% when the control voltage is at reference. A control voltage halfway between the rail voltages, however, produces a 50% duty cycle waveform.

Fig. 1. Oscillator.
Fig. 2 shows the waveforms for the oscillator.

Fig. 2. Oscillator waveforms for LM324 op-amp [1] with $\pm 5 \mathrm{~V}$ supplies.
When the output goes high, the capacitor starts charging toward the positive rail voltage. The positive rail voltage, along with potentiometer, $R_{\mathrm{a}}, R_{\mathrm{b}}$, and the control voltage, $v_{\text {ctrl }}$, create a voltage divider that determines how high the output voltage, v_{o}, rises before the op-amp, acting as a comparator, switches to negative rail voltage
output. The same voltage divider is now fed by a negative voltage that determines how low the output voltage, v_{0}, drops before the op-amp, acting as a comparator, switches to positive rail voltage output. The cycle then repeats.

Analysis of circuit:

To determine the timing of the output waveform, we solve $R C$ charging problems for the rising capacitor voltage. The solution for falling capacitor voltage is obtained by switching the $v_{+ \text {rail }}$ and $v_{\text {-rail }}$ and inverting the value of $v_{\text {ctrl }}$.
The initial voltage for the $R C$ charging problems is the trip point, v_{p} in Fig. 2, determined by the voltage divider fed by $v_{\mathrm{O}}=v_{\text {-rail }}$ and $v_{\text {ctrl }}$.

$$
v_{C}\left(0^{-}\right)=v_{\mathrm{p}}\left(0^{-}\right)=\frac{v_{- \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{a}}{R_{\mathrm{a}}+R_{\mathrm{b}}}
$$

The final destination voltage is the positive rail voltage for v_{o}, although switching occurs before this voltage is reached.

$$
v_{C}(t \rightarrow \infty)=v_{+ \text {rail }}
$$

The time constant, $R C$, primarily determines the oscillation frequency, whereas v_{ctrl} primarily controls the duty cycle.

$$
\tau=R C
$$

It is recommended that the duty cycle be set first with $v_{\text {ctrl }}$. Then R may be adjusted to set the oscillation frequency.

The equation for the charging and discharging curves:

$$
v_{C}(t)=\left[v_{C}\left(0^{-}\right)-v_{C}(t \rightarrow \infty)\right] e^{-t / \tau}+v_{C}(t \rightarrow \infty) .
$$

Solving for the time of a half-cycle, we set the trip point equal to the capacitor voltage:

$$
v_{C}(t)=v_{\mathrm{p}}=\frac{v_{+\mathrm{rail}} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}=\left[v_{C}\left(0^{-}\right)-v_{C}(t \rightarrow \infty)\right] e^{-t / \tau}+v_{C}(t \rightarrow \infty)
$$

or

$$
v_{C}(t)=\frac{v_{+ \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}=\left[\frac{v_{-\mathrm{rail}} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}\right] e^{-t / \tau}+v_{+ \text {rail }}
$$

or

$$
\ln \left(\frac{\frac{v_{+ \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}}{\frac{v_{- \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}}\right)=-t / \tau
$$

or

$$
t=-\tau \ln \left(\frac{\frac{v_{+ \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}}{\frac{v_{\text {-rail }} R_{\mathrm{b}}+v_{\text {ctrl }} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}}\right)=\tau \ln \left(\frac{\frac{v_{- \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}}{\frac{v_{+ \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}}{R_{\mathrm{a}}+R_{\mathrm{b}}}-v_{+ \text {rail }}}\right)
$$

or

$$
t=\tau \ln \left(\frac{v_{- \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}-v_{+ \text {rail }}\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right)}{v_{+ \text {rail }} R_{\mathrm{b}}+v_{\mathrm{ctrl}} R_{\mathrm{a}}-v_{+ \text {rail }}\left(R_{\mathrm{a}}+R_{\mathrm{b}}\right)}\right)
$$

or

$$
t=\tau \ln \left(\frac{v_{- \text {rail }} \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}+v_{\text {ctrl }}-v_{+ \text {rail }}\left(1+\frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}\right)}{v_{\mathrm{ctrl}}-v_{+ \text {rail }}}\right)=\tau \ln \left(\frac{v_{\text {ctrl }}-v_{+ \text {rail }}-v_{+ \text {rail }} \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}+v_{- \text {rail }} \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}}{v_{\text {ctrl }}-v_{+ \text {rail }}}\right)
$$

or, reversing signs in the numerator and denominator,

$$
t=\tau \ln \left(\frac{v_{+ \text {rail }}-v_{\mathrm{ctrl}}+\left(v_{+ \text {rail }}-v_{- \text {rail }}\right) \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}}{v_{+ \text {rail }}-v_{\mathrm{ctrl}}}\right)=\tau \ln \left(1+\frac{v_{+ \text {rail }}-v_{- \text {rail }}}{v_{+ \text {rail }}-v_{\mathrm{ctrl}}} \cdot \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}\right)
$$

If we set $v_{\text {ctrl }}=0 \mathrm{~V}$, we obtain the following simplified form.

$$
t=\tau \ln \left(1+\frac{v_{+ \text {rail }}-v_{- \text {rail }}}{v_{+ \text {rail }}} \cdot \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}\right)=\tau \ln \left(1+\left[1-\frac{v_{- \text {rail }}}{v_{+ \text {rail }}}\right] \cdot \frac{R_{\mathrm{b}}}{R_{\mathrm{a}}}\right)
$$

For $R_{\mathrm{a}}=R_{\mathrm{b}}$, as in Figs. 2 and 3,

$$
t=\tau \ln \left(2-\frac{v_{- \text {rail }}}{v_{+ \text {rail }}}\right)
$$

For the waveforms in Fig. 2, we have the following ratio of rail voltages:

$$
\frac{v_{\text {-rail }}}{v_{\text {+rail }}}=\frac{-5 \mathrm{~V}}{3 \mathrm{~V}}=-\frac{5}{3} .
$$

For the waveforms in Fig. 2, we have the following calculation:

$$
t=\tau \ln \left(2--\frac{5}{3}\right)=\tau \ln \left(\frac{11}{3}\right) \approx \tau \cdot 1.3 \text { for output high, }
$$

and

$$
t=\tau \ln (2--0.6)=\tau \ln (2.6) \approx \tau \cdot 0.95 \text { for output low. }
$$

REF: [1] https://www.fairchildsemi.com/datasheets/1N/1N914.pdf (accessed 23 July 2017)

