OUTREACH PROJECT CIRCUITS Pulse Generator

CIRCUIT: The pulse generator circuit in Fig. 1 produces one pulse each time the input, at v_M , goes high. A comparator, as shown in Fig. 1, or a logic gate can provide the input signal to start the output pulse.

Fig. 1. Pulse generator circuit.

The duration of the output pulse at v_0 is controlled by the R_3C time constant and the voltage divider formed by R_1 and R_2 . When the signal at v_M goes high at t = 0, the signal at v_R immediately goes high, whereas the voltage at v_C starts to rise according to the general solution of an *RC* circuit:

$$v_{\mathrm{C}}(t>0) = e^{-t/\tau} [v_{\mathrm{C}}(0) - v_{\mathrm{C}}(t \to \infty)] + v_{\mathrm{C}}(t \to \infty)$$

where $\tau = R_3 C$.

If $v_{\rm M}$ has been low for several time constants, the *C* will discharge. For an LM324 quad op-amp with supplies of +5 V and 0 V, the output-low voltage is close to 0 V. Thus, the initial voltage on the *C* is he output of the voltage divider formed by R_3 and R_4 with $v_{\rm M} \approx 0$ V.

$$v_{\rm C}(0) = \frac{v_{\rm M}R_4 + V_{\rm CC}R_3}{R_3 + R_4} \approx \frac{V_{\rm CC}R_3}{R_3 + R_4}$$

For an LM324 quad op-amp with supplies of +5 V and 0 V, the output-high voltage is approximately $v_{+\text{Rail}} \approx 3.6$ V. Thus, the final voltage the C is charging toward is

$$v_{\rm C}(t \rightarrow \infty) = \frac{v_{+\rm Rail}R_4 + V_{\rm CC}R_3}{R_3 + R_4}.$$

Substituting the values above and performing a few steps of algebra, we have

$$v_{\mathcal{C}}(t>0) = e^{-t/\tau} [v_{\mathcal{C}}(0) - v_{\mathcal{C}}(t \to \infty)] + v_{\mathcal{C}}(t \to \infty)$$

or

$$v_{\rm C}(t>0) = e^{-t/(R_3C)} \left(\frac{V_{\rm CC}R_3}{R_3 + R_4} - \frac{v_{\rm M}R_4 + V_{\rm CC}R_3}{R_3 + R_4} \right) + \frac{v_{\rm M}R_4 + V_{\rm CC}R_3}{R_3 + R_4}$$

or

$$v_{\rm C}(t>0) = e^{-t/(R_3C)} \left(-\frac{v_{\rm M}R_4}{R_3 + R_4} \right) + \frac{v_{\rm M}R_4 + V_{\rm CC}R_3}{R_3 + R_4}$$

or

$$v_{\rm C}(t>0) = \left[1 - e^{-t/(R_3C)}\right] \left(\frac{v_{\rm M}R_4}{R_3 + R_4}\right) + \frac{V_{\rm CC}R_3}{R_3 + R_4}.$$

The extra term on the right ensures that the comparator's - input will be more positive than the + input when the circuit, so the output of the comparator will be low.

Once $v_{\rm M}$ goes high, the output of the circuit, $v_{\rm o}$, goes high and stays high until $v_{\rm C} = v_{\rm R}$. If $R_4 >> R_3$, the last term on the right in the preceding equation is small, and the timing of the circuit is nearly independent of the exact value of $v_{\rm M}$. From here on, we will assume that R_4 is quite large, and we use a simpler formula for $v_{\rm C}(t > 0)$:

$$v_{\rm C}(t>0) \approx v_{\rm M} \left[1 - e^{-t/(R_3 C)} \right]$$

The value of $v_{\rm R}$ is given by the voltage-divider formula:

$$v_{\rm R} = v_{\rm M} \frac{R_2}{R_1 + R_2}$$

We solve for the duration, Δt , of the output pulse by solving for $v_{\rm C} = v_{\rm R}$.

$$v_{\rm R} = v_{\rm M} \frac{R_2}{R_1 + R_2} = v_{\rm C}(\Delta t) \doteq v_{\rm M} [1 - e^{-\Delta t/\tau}]$$

or

OUTREACH PROJECT CIRCUITS Pulse Generator (cont.)

$$v_{\mathrm{M}} \frac{R_2}{R_1 + R_2} \doteq v_{\mathrm{M}} [1 - e^{-\Delta t/\tau}]$$

or

$$\frac{R_2}{R_1 + R_2} \doteq 1 - e^{-\Delta t/\tau}$$

or

$$\frac{R_2}{R_1 + R_2} - 1 \doteq -e^{-\Delta t/\tau}$$

or

$$-\frac{R_1}{R_1+R_2} \doteq -e^{-\Delta t/\tau}$$

or

$$\frac{R_1}{R_1 + R_2} \doteq e^{-\Delta t/\tau}$$

or

$$\ln\frac{R_1 + R_2}{R_1} \doteq \Delta t \, / \, \tau$$

or

$$\Delta t \doteq \tau \ln \frac{R_1 + R_2}{R_1} \doteq R_3 C \ln \frac{R_1 + R_2}{R_1} \,.$$

Suppose, for example, R1 = R2.

$$\Delta t \doteq R_3 C \ln 2 \approx \tau(0.693)$$

Thus, the time constant we use is $\tau = R_3 C \approx \frac{\Delta t}{0.693} \approx (1.44) \Delta t \approx (1.5) \Delta t$.