OUtreach
Project Circuits
Pulse Generator

Circuit：The pulse generator circuit in Fig． 1 produces one pulse each time the input，at v_{M} ， goes high．A comparator，as shown in Fig．1，or a logic gate can provide the input signal to start the output pulse．

Fig．1．Pulse generator circuit．
The duration of the output pulse at v_{o} is controlled by the $R_{3} C$ time constant and the voltage divider formed by R_{1} and R_{2} ．When the signal at v_{M} goes high at $t=0$ ，the signal at v_{R} immediately goes high，whereas the voltage at v_{C} starts to rise according to the general solution of an $R C$ circuit：

$$
v_{\mathrm{C}}(t>0)=e^{-t / \tau}\left[v_{\mathrm{C}}(0)-v_{\mathrm{C}}(t \rightarrow \infty)\right]+v_{\mathrm{C}}(t \rightarrow \infty)
$$

where $\tau=R_{3} C$ ．
If v_{M} has been low for several time constants，the C will discharge．For an LM324 quad op－amp with supplies of +5 V and 0 V ，the output－low voltage is close to 0 V ．

Thus，the initial voltage on the C is he output of the voltage divider formed by R_{3} and R_{4} with $v_{\mathrm{M}} \approx 0 \mathrm{~V}$ ．

$$
v_{\mathrm{C}}(0)=\frac{v_{\mathrm{M}} R_{4}+\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}} \approx \frac{\mathrm{~V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}}
$$

For an LM324 quad op－amp with supplies of +5 V and 0 V ，the output－high voltage is approximately $v_{+ \text {Rail }} \approx 3.6 \mathrm{~V}$ ．Thus，the final voltage the C is charging toward is

$$
v_{\mathrm{C}}(t \rightarrow \infty)=\frac{v_{+\mathrm{Rail}} R_{4}+\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}} .
$$

Substituting the values above and performing a few steps of algebra, we have

$$
v_{\mathrm{C}}(t>0)=e^{-t / \tau}\left[v_{\mathrm{C}}(0)-v_{\mathrm{C}}(t \rightarrow \infty)\right]+v_{\mathrm{C}}(t \rightarrow \infty)
$$

or

$$
v_{\mathrm{C}}(t>0)=e^{-t /\left(R_{3} C\right)}\left(\frac{\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}}-\frac{v_{\mathrm{M}} R_{4}+\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}}\right)+\frac{v_{\mathrm{M}} R_{4}+\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}}
$$

or

$$
v_{\mathrm{C}}(t>0)=e^{-t /\left(R_{3} C\right)}\left(-\frac{v_{\mathrm{M}} R_{4}}{R_{3}+R_{4}}\right)+\frac{v_{\mathrm{M}} R_{4}+\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}} .
$$

or

$$
v_{\mathrm{C}}(t>0)=\left[1-e^{-t /\left(R_{3} C\right)}\right]\left(\frac{v_{\mathrm{M}} R_{4}}{R_{3}+R_{4}}\right)+\frac{\mathrm{V}_{\mathrm{CC}} R_{3}}{R_{3}+R_{4}}
$$

The extra term on the right ensures that the comparator's - input will be more positive than the + input when the circuit, so the output of the comparator will be low.

Once v_{M} goes high, the output of the circuit, v_{o}, goes high and stays high until $v_{\mathrm{C}}=v_{\mathrm{R}}$. If $R_{4} \gg R_{3}$, the last term on the right in the preceding equation is small, and the timing of the circuit is nearly independent of the exact value of v_{M}. From here on, we will assume that R_{4} is quite large, and we use a simpler formula for $v_{\mathrm{C}}(t>0)$:

$$
v_{\mathrm{C}}(t>0) \approx v_{\mathrm{M}}\left[1-e^{-t /\left(R_{3} C\right)}\right]
$$

The value of v_{R} is given by the voltage-divider formula:

$$
v_{\mathrm{R}}=v_{\mathrm{M}} \frac{R_{2}}{R_{1}+R_{2}}
$$

We solve for the duration, Δt, of the output pulse by solving for $v_{\mathrm{C}}=v_{\mathrm{R}}$.

$$
v_{\mathrm{R}}=v_{\mathrm{M}} \frac{R_{2}}{R_{1}+R_{2}}=v_{\mathrm{C}}(\Delta t) \doteq v_{\mathrm{M}}\left[1-e^{-\Delta t / \tau}\right]
$$

or

$$
v_{\mathrm{M}} \frac{R_{2}}{R_{1}+R_{2}} \doteq v_{\mathrm{M}}\left[1-e^{-\Delta t / \tau}\right]
$$

or

$$
\frac{R_{2}}{R_{1}+R_{2}} \doteq 1-e^{-\Delta t / \tau}
$$

or

$$
\frac{R_{2}}{R_{1}+R_{2}}-1 \doteq-e^{-\Delta t / \tau}
$$

or

$$
-\frac{R_{1}}{R_{1}+R_{2}} \doteq-e^{-\Delta t / \tau}
$$

or

$$
\frac{R_{1}}{R_{1}+R_{2}} \doteq e^{-\Delta t / \tau}
$$

or

$$
\ln \frac{R_{1}+R_{2}}{R_{1}} \doteq \Delta t / \tau
$$

or

$$
\Delta t \doteq \tau \ln \frac{R_{1}+R_{2}}{R_{1}} \doteq R_{3} C \ln \frac{R_{1}+R_{2}}{R_{1}} .
$$

Suppose, for example, $R 1=R 2$.

$$
\Delta t \doteq R_{3} C \ln 2 \approx \tau(0.693)
$$

Thus, the time constant we use is $\tau=R_{3} C \approx \frac{\Delta t}{0.693} \approx(1.44) \Delta t \approx(1.5) \Delta t$.

