Statistics Worksheet
 Probability
 Created by: Neil E Cotter

Useful Information:
E means "Expected value" or average value. σ means standard deviation, or average variation.
$P\left(X_{i}\right)$ means the probability of an outcome called X_{i} (such as $X_{1}=$ heads or $X_{2}=$ tails for a coin flip $E(X)$ means the average value of experiment X, such as $X=$ throwing a die σ_{Y} means the average variation of experiment Y, such as $Y=$ flipping a coin

$$
\begin{aligned}
& E(X)=\sum_{\substack{\text { possible } \\
\text { outcomes } \\
X_{i} \text { for } X}} X_{i} P\left(X_{i}\right) \\
& \sigma=\sqrt{\sum_{\begin{array}{l}
\text { possible } \\
\text { outcomes } \\
X_{i} \text { forX }
\end{array}}\left[X_{i}-E\left(X_{i}\right)\right]^{2}}
\end{aligned}
$$

1) Consider flipping a coin. If it comes up heads, you get $\$ 1$. If it comes up tails, you get $\$ 2$. What is the average payoff?
2) Consider throwing a 6 -sided die with numbers 1 through 6 on its sides. Find the expected value (or average number) you get.
3) The expected value for the sum of n dice is n times the expected value of throwing one die. What is the expected value of the sum of three 6 -sided dice?
4) The standard deviation for the sum of n dice is \sqrt{n} times the standard deviation of throwing one die. The standard deviation for throwing one die is $\sqrt{35 / 12} \approx 1.7$. What is the standard deviation of the sum of four 6 -sided dice?
