CONCEPTUAL TOOLS

 

 

Neil E. Cotter

Associate Professor (Lecturer)

Electrical and Computer Engineering Dept

University of Utah

Last Updated:  12/3/19

 


Neural Networks

Biological Neurons

Anatomy (pdf)

Membrane potentials

†Resting potential

†Nernst-Planck equation overview

†Diffusion currents

†Drift currents

†Nernst-Planck equation

†Goldman-Hodgkin-Katz equation

Cable theory

†Membrane I-V curve

†Linear membrane model

†Transmission line equation

Impedance ladders

†Parallel resistors
†Laplace transformed impedances
†Thevenin equivalents
†Superposition
†Infinite resistor ladders
†Termination

†Synapse

Action potentials

†Hodgkin-Huxley model

†Propagation

†Models summary

FitzHugh-Nagumo Neuron

†Equations

†Nullclines

†Limit cycles

†Summary

McCulloch-Pitts model

Neuron (pdf)

Logic gates (pdf)

Perceptrons

†Analogy to biological neuron

Hyperplane decision boundary (pdf)

Linear separability (pdf)

Logic gates (pdf)

Pattern recognition (pdf)

Decision boundary analysis (pdf)

Decision boundary analysis [part 2] (pdf)

NeuralNetDecisionBoundaryPlot.m (Matlab®)

Circular decision regions (pdf)

Universal approximation (pdf)

Universal approximation [part 2] (pdf)

Turing equivalent (pdf)

Proportional increment training | (pdf)

NeuralNetPerceptronExPIT.m (Matlab®)

†Limitations of perceptron: Minsky Papert

†Universal approximation

Sigmoid Networks

Logistic neuron

†Neuron

†Logistic function

†Squashing function derivative

Stone-Weierstrass theorem not applicable (pdf)

Universal approximation (pdf)

Backward Error Propagation

Problem statement (pdf)

Notation (pdf)

Algorithm (pdf)

Delta rule (pdf)

Example 1: y=x1+x2 (pdf)

NeuralNetBackpropExAdd.m (Matlab®)

NeuralNetBackpropOutput.m (Matlab®)

NeuralNetDecisionBoundaryPlot.m (Matlab®)

Example 2: y=x1*x2 (pdf)

NeuralNetBackpropExMult.m (Matlab®)

NeuralNetBackpropOutput.m (Matlab®)

NeuralNetDecisionBoundaryPlot.m (Matlab®)

Example 3: y=x1^2 + x2^2 (pdf)

NeuralNetBackpropExMult.m (Matlab®)

NeuralNetBackpropOutput.m (Matlab®)

NeuralNetDecisionBoundaryPlot.m (Matlab®)

Polynomial/Sigma-Pi Networks

Definitions

Ill-conditioned polynomial fits

CMAC

†Definition

†Optimal weights

†Variable step size learning

†CMAC and Kolmogorov networks

Self-organizing maps: Kohonen

†Definition

†Learning

†Physical layout of neurons

*†Phase series:

Transforming to phases

Fixed weight network

Pulse-Width Modulated Net

†PWM spectra

†Convergence

Boltzmann Machine

†Architecture

†Energy minimization

†Energy and synaptic weights

†High order statistics

†Learning

†Travelling salesman problem

Adaptive Resonance: Grossberg

Hopfield network

†Applications

†Neuron

†Network

†Binary

†Continuous

†Linearization

Lyapunov functions

†Binary network

†Continuous network

†Outer product learning

†Unlearning

†Optimization

†Memory capacity

†Deconvolution example

Adaptive Control Networks

Linear Feedback Error: Kawato

Dynamic backprop: Narendra

Recurrent backprop: Williams Zipser

Backprop thru time: Werbos

Adaptive critic: Barto et al

Temporal differences: Sutton

Learning as dynamic system

Supervised Learning

†Backprop thru time

†Temporal differences

†Learning as dynamic system

VCON

Overview

†Integrate and fire model

†Voltage controlled oscillator neuron (VCON)

†Voltage controlled oscillators

†Phase locked loops

VCON

Overview

†Phase locked loops
†Synapse
†Phase locking
†Neuron

†Free running behavior

External stimulation

†Pulse generation
†Phase resetting

averaging

†Bogoliuboff’s theorem

†RLC example

VCON phase locking

†Equations
†Change of variables
†Periodicity
†Subtleties

†Relationship to Hopfield network

*†Pulsed Network:

Neuron

Decision regions

Learning

Universal Approximation