2270 STUDY GUIDE*
To pass the unit exam, you must be able to do the following (using books and notes):
|
Learning Objective |
Reading |
Laplace transformStep functionsExample (pdf) |
3.1. Use step functions to express functions of limited duration. |
Chap 12 Sec 12.1- 12.2 |
Laplace transformTransform pairs:Example (pdf) |
3.2. Find the Laplace transform of the functions of time commonly used in circuit theory. |
Chap 12 Sec 12.4 |
Laplace transformIdentities:Example 1 (pdf)Example 2 (pdf)Example 3 (pdf) |
3.3. Apply the operational transform identities commonly used in circuit theory, including differentiation, integration, translation in the time domain, translation in the frequency domain, and scale changing. |
Chap 12 Sec 12.5- 12.6 |
Laplace transformInverse transformPartial fractionsExample 1 (pdf)Example 2 (pdf) |
3.4. Find inverse Laplace transforms of rational functions of s, including those with complex and repeated roots. |
Chap 12 Sec 12.7
|
Laplace transformPoles and zerosExample 1 | (pdf)Example 2 (pdf) |
3.5. Plot the poles and zeros of a rational function of s in the s plane. |
Chap 12 Sec 12.8
|
Laplace transformInitial/final value thmsExample (pdf) |
3.6. Apply the initial- and final-value theorems. |
Chap 12 Sec 12.9
|
Laplace transformCircuitss-domain circuit elementsExample (pdf) |
3.7. Transform circuits (including initial conditions) to the s domain. |
Chap 13 Sec 13.1 |
Laplace transformCircuitss-domain solutionsExample (pdf) |
3.8. Apply Kirchhoff's laws and techniques used for resistive circuits to circuits in the s domain, including impedance relationships, super-position, and source transformations. |
Chap 13 Sec 13.2
|
Laplace transformCircuitst-domain waveformsExample (pdf) |
3.9. Obtain expressions for specified voltages and currents in circuits in the s domain, and transform them to the time domain. |
Chap 13 Sec 13.3 |
Impulse Function d(t)DefinitionImpulse Identity ConvolveLaplace transformCircuitsImpulse functionExample (pdf) |
3.10. Analyze and design circuits that include impulse functions. |
Chap 12 Sec 12.3 Chap 13 Sec 13.8
|
|
3.11. Make consistency checks in s domain. |
- |
* The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.