1270 STUDY GUIDE*
To pass the unit exam, you must be able to do the following (using books and notes):
Learning Objective |
Reading |
|
Complex Analysisexplanations of jConvenient examplesBasic mathAddition and subtractionExample | (pdf)MultiplicationRationalizationExample 1 | (pdf)Example 2 | (pdf)ConjugateDefinition | (pdf)Example 1 | (pdf)Example 2 | (pdf)Example 3 | (pdf)MagnitudeExample 1 | (pdf)PhaseRe[]Example 1 | (pdf)Example 2 | (pdf)Im[]Roots and PowersNth rootsexample | (pdf)Nth roots of unityPowersexample | (pdf)Rect and Polar FormsEuler's formula (complex exp)Polar formRect<->polar xform triangleExample 1 | (pdf)Example 2 | (pdf)Example | (pdf)
|
4.1 Perform these operations on complex numbers: a. Multiply, divide, add, and subtract complex numbers. b. Find the complex conjugate of any complex number. c. Rationalize the denominator of a fraction of complex numbers. d. Convert from polar form to rectangular form and vice versa. e. Find the real part of any complex number. f. Find the absolute value (i.e., magnitude) of any complex number. g. Find the nth root or power of any complex number. |
App B |
Complex AnalysisPhasorsTutorial | (pdf)Rotating stick shadowIdentitiesPhasor mathPhasor<->inv-phasor xformExample 1 | (pdf)Example 1 (cont) (pdf)Example 2 | (pdf)Example 2 (cont) (pdf) |
4.2 Take the phasor transform of a sinusoidal function of time and inverse phasor transform of a phasor. |
Chap 9: Sec 9.1-9.3 |
Impedance circuitsOhm's lawStatementSeries impedancesParallel impedancesImpedance networksExample 1 (pdf)Example 2 (pdf) |
4.3 Transform circuits to the frequency domain and apply the concept of impedance in the frequency domain. This includes finding the equivalent impedance of combinations of elements. |
Chap 9: Sec 9.4,9.6 |
Impedance circuitsKirchhoff's lawsExample (pdf) |
4.4 Apply Kirchhoff's laws in the frequency domain. |
Chap 9: Sec 9.5 |
Impedance circuitsNode-voltage methodExample (pdf) |
4.5 Apply the node-voltage method in the frequency domain. |
Chap 9: Sec 9.8 |
Impedance circuitsMesh-current methodExample (pdf) |
4.6 Apply the mesh-current method in the frequency domain. |
Chap 9: Sec 9.9 |
Impedance circuitsThevenin equivalentDeriving Thevenin equivalentExample 1 (pdf)Example 2 (pdf) |
4.7 In the frequency domain, transform sources and find Thevenin and Norton equivalent circuits. |
Chap 9: Sec 9.7 |
SuperpositionCircuitsVAC + VACExample (pdf) |
4.8 Apply the principle of superposition in the frequency domain. |
|
Complex AnalysisPhasorsPhasor diagramsExample (pdf) |
4.9 Draw appropriate phasor diagrams and use them in analyzing and designing circuits. |
Chap 9: Sec 9.12 |
* The material in this handout is based extensively on concepts developed by C. H. Durney, Professor Emeritus of the University of Utah.